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Introduction

The discipline of AI systems engineering seeks to integrate 
methods of artificial intelligence (AI) from an engineering 
perspective into the design, development and operation of 
technical systems consisting of hardware and software in 
a systematic, predictable and reliable manner. This objective 
is driven by the considerable potential offered by the use of 
machine learning (ML) in particular. In the field of data 
interpretation, these methods are sometimes able to achieve 
results (performances) that could not have been achieved 
with conventional methods despite decades of development 
work.1 

In the past, AI was primarily based on conventional algorithms, 
such as knowledge-based or rule-based systems. These 
software systems were programmed by human operators and 
are specifically tailored to individual use cases. Advancements 
in computer processing power over the past few decades, 
coupled with increasing availability of data, have facilitated 
and progressively expanded the use of data-driven processes. 
Consequently, machine learning as a subcategory of AI 
algorithms is gaining more and more practical prominence. 
Simply put, the ML algorithm programs software to perform 
a given task. The automatic programming is done by analyzing 
what are known as training data in order to identify patterns 
and relationships. Therefore, the functionalities of the created 
software are largely determined by the composition and quality 
of the training data.

While this approach results in an immense gain in efficiency 
in development, it also necessitates a suitable process. 
Conventional process models require a manually specified 

and systematically testable system and are only compatible 
with machine learning methods to a limited extent. At 
present, the only testing methods available for machine 
learning are empirical ones — regardless of whether ML is 
built into the final product2 or whether ML-based methods 
are used to develop a conventional final product.3 As soon 
as the results of complex ML-based methods influence the 
suitability of the final product in a critical way, it is necessary 
to be able to trace this influence back to first principles. 
The ML-based methods used and the underlying data need 
to be monitored in a well-founded manner during system 
development. After an ML-based component has been 
delivered, it must also be ensured that the product continues 
to function reliably under changed environmental conditions, 
for example.

The challenges for project management for which the PAISE® 
process model offers solutions are presented below.

Introduction

The process model for AI systems engineering, PAISE® for short, was developed at the 
Competence Center for AI Systems Engineering (CC-KING). PAISE® comprises the systematic 
and standardized development and operation of AI-based system solutions. Approaches 
from computer science and data-driven modeling are combined with those from traditional 
engineering disciplines, such as systems engineering. 

1 Deep learning methods are capable of outperforming human subjects when it comes to image interpretation, for example [D. Ciresan, U. Meier, J. Schmidhuber. 
(2012). Multi-column Deep Neural Networks for Image Classification. IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649.].

2 For example, when decisions learned during operation are made or when the program is modified to an even greater extent, i.e. it continues to learn on the 
basis of the data during operation.

3 For example, to select suitable materials or design parameters using ML-based methods.

Notes on text formatting

The definitions of terms written in bold type and 
italics can be found in the glossary (p. 32). Terms in blue 
correspond to the phases of PAISE®
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Systems engineering offers formalized approaches to 
organizational challenges, such as interdisciplinary collaboration 
in the development of complex technical systems. Software 
solutions, such as embedded software on a microcontroller 
or programmable logic controller, are fundamental to many 
domains including medical engineering, mechanical and plant 
engineering and mobility.

Nowadays, for example, process models that were originally 
used for software development and were transferred to 
systems engineering are used for the development of complex 
technical systems. Examples include the waterfall model,5 
the V-model6 and SCRUM.7 

Two specific challenges in the development of AI-based 
systems have been identified and need to be addressed during 
the development process:

1. It is often the case that the performance of an AI-based 
approach cannot be estimated in advance, but must instead 
be determined empirically.

2. Data-driven methods such as machine learning require 
operational data as early as the development stage. 

These two aspects are explained in more detail below, along 
with their respective impact on the technical development 
process (see ISO/IEC/IEEE 15288:2015). The aim of PAISE® is 
to provide a solution that meets a high standard of technical 
quality. Commercial aspects and company-specific processes 
are not addressed in this document. 

1.   It is often the case that the performance of an AI-based 
approach cannot be estimated ahead of time, but must be 
determined empirically instead.

In a development process based on the waterfall model, 
a high-level architecture8 is derived from the requirements and 
refined step by step. In the context of a certification of critical 
systems, these steps of derivation and refinement must also be 
documented in a comprehensible manner.

In many traditional engineering disciplines, it is possible 
to design a high-level architecture for a system according 
to requirements without having to test functional aspects 
using prototypical means. This is made possible with modeling 
that is based on physical models, empirical values and 
simulations.9 

The challenges of developing AI-based systems 

The discipline of AI systems engineering4 evolved from the discipline of systems engineering. 
While systems engineering methods and techniques are now applied successfully 
in developing complex technical systems, the use of AI within such systems poses new 
challenges for the development process.

4 https://www.ki-engineering.eu/de/was-ist-ki-engineering.html

5 [W. Royce. (1970). Managing the Development of Large Software Systems. Proceedings of IEEE WESCON 26 (August), (pp. 1–9).]

6 [B.W. Boehm. (1981). Software Engineering Economics, Prentice Hall.] [J. Friedrich, M. Kuhrmann, M. Sihling, U. Hammerschall. (2009). Das V-Modell XT. 
Informatik im Fokus. Springer, Berlin, Heidelberg.]

7 [K. Schwaber, M. Beedle. (2002). Agile Software Development with Scrum. Prentice Hall, Upper Saddle River, United States]

8 In PAISE®, the high-level architecture corresponds to the system model created in the functional decomposition phase and is refined and adapted during 
the development cycle phase.

https://www.ki-engineering.eu/de/was-ist-ki-engineering.html
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The challenges of developing AI-based systems 

In the case of AI processes, however, it is more difficult 
to estimate performance theoretically or on the basis of 
empirical values, since the high-level architecture can only 
be conclusively determined to a limited extent. Particularly 
when the performance is governed by rare special cases, 
implementation details can result in significant differences.

Therefore, when AI-based algorithms are tightly integrated 
into an overall system, it is often the case that they must 
be implemented in advance, at least in prototype form. 
The performance of the implementation in relation to the 
requirements is then empirically tested before the high-level 
system architecture can be finalized. This aspect can be 
taken into account by means of an iterative procedure that is 
incorporated into the development cycle phase in PAISE®. 
The high-level architecture is iteratively refined and adapted. 

In some cases, it is not possible to refine the high-level 
architecture iteratively because of certain framework 
conditions, for example because the development of individual 
components is to be outsourced to external companies. In this 
case, preliminary developments of AI-based components can 
be useful for estimating the performance, so that the high-level 
architecture can be determined reliably and iterative adaptation 
is no longer necessary. Then again, such an approach leads to 
a loss of flexibility, which can mean that the solution that is 
technically optimal is ruled out from the outset.

2.   Data-driven techniques, such as machine learning, often 
rely on operational data during development.

Data-driven methods such as machine learning require 
high-quality data to learn their behavior from. Quality is 
determined, among other things, by how representative the 
data used for learning (training data) are for the intended use 

9 An example of a supporting tool is the Modelica modeling language, in which multi-physics simulations can be easily combined with predefined libraries 
of reusable building blocks.

10 https://www.iosb.fraunhofer.de/de/projekte-produkte/ml4p-maschinelles-lernen-fuer-produktionsprozesse.html 

11 External data sources are used in the field of image recognition on a frequent basis. Additional image data are either available free of charge or can be 
purchased from commercial providers.

case. The challenge here is that the training data required 
during development should, if possible, come from the 
actual application of the system, which has not yet been fully 
developed.

In the ML4P (Machine Learning for Production10) process 
model of the Fraunhofer-Gesellschaft, the starting point is 
an existing production facility into which machine learning 
methods are to be integrated (brownfield development). In 
this case, it is possible to obtain high-quality training data 
from the existing facility. If, on the other hand, an AI-based 
system is developed from scratch (greenfield development), 
real data from the system itself are not available until after 
commissioning. However, since development is supposed to be 
carried out with the aid of these data, other approaches must 
be taken into account. Possible alternatives include:

 � Phased implementation: The data are generated by an 
existing technical system into which AI is to be integrated.

 � Measurement campaigns: Data are generated under 
controlled conditions in dedicated measurement campaigns 
and series of experiments, possibly under slightly different 
conditions from those in the use case (laboratory conditions).

 � Simulations: Data are generated by simulations of the 
technical system.

 � External data sources: Data from external providers are 
incorporated.11

Data sources, both for development and operation, must 
therefore be taken into account from the outset during system 
development. In PAISE®, datasets are also included in the 
system model, and time and resources must be allocated for 
their development. This aspect is taken into account in PAISE® 
in a separate process called “data provisioning.”

https://www.iosb.fraunhofer.de/de/projekte-produkte/ml4p-maschinelles-lernen-fuer-produktionsprozesse.html
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The primary application domains for PAISE® are mobility 
and production, whereby different application scenarios are 
addressed. These scenarios include both the one-off customer-
specific development and implementation of AI-based 
systems and the development of entirely new products that are 
to be manufactured and sold in multiple versions. The PAISE 
process model is shown schematically in Figure 1. 

The subsystems of an overall system provide their own 
individual functionalities that are independent of one another, 
have clearly defined interfaces and can also be broken down 
into smaller parts. Machine learning (ML) can, on the 
one hand, be integrated into subsystems directly and, on 
the other hand, be used in the development of enabling 
systems. Subsystems and enabling systems can be classified 
as AI-based and/or as a data source. In addition, datasets 
are developed individually. Subsystems, enabling systems and 
datasets are referred to as components in PAISE®.

The use of machine learning poses inherent risks during 
the development process.12 Such risks arise, for example, 
from the dependence on data quality, which can lead to 
a limitation of functionalities, or from unpredictability 
regarding the performance of AI-based systems. In order 
to take these risks into account during the development 
process, the development cycle passes through what are 
known as checkpoints. It is at these checkpoints that (partial) 
integration and assessment take place in relation to the 
requirements. For ML components, this entails an evaluation 
against validation metrics in order to assess the function within 
the overall system. The outcomes of a checkpoint can prompt 
refinements as well as adjustments in the solution approaches 
taken to achieve component functionality. By cycling through 

PAISE® — the process model

PAISE® highlights the development of a product as an overall system that can be broken 
down into subsystems. PAISE® is characterized by a cyclical progression through refinement 
steps, component development and checkpoints. This makes it possible to alternate 
between an explorative approach on the one hand and a goal-oriented approach 
on the other.
 

component development, checkpoint/assessment and 
refinement, the maturity level of all components and thus 
of the overall system is continuously increased. 

In parallelized component development, it is possible 
to combine different process models in a hierarchical 
manner. While preferential procedures can be followed 
for the development of conventional system components, 
“ML component development” is defined for ML components 
and links the development phases in a standardized manner 
according to engineering standards. Given the fact that 
sourcing the training data required for developing the 
ML component can sometimes be very complex, PAISE® 
addresses the process of data provisioning (pp. 19–21) 
separately.

A waterfall model was chosen for the overall system 
development procedure in this description. However, it should 
be emphasized that the seven phases described can also be 
applied to other models. The underlying “checkpoint-based” 
concept of PAISE® is still applicable.

PAISE® is a process template that can and should be 
adapted to the organizational framework conditions at 
the company. As with any process model, the elements of 
PAISE® must be applied to each use case in order to derive 
specific action steps from it. PAISE® focuses on the technical 
process (see ISO/IEC/EEE 15288:2015) and does not address 
commercial aspects and company-specific processes.

12 This relates to risks that threaten the project and that can be minimized using iterative approaches in line with Boehm’s spiral model. [B. Boehm. (1986).  
A Spiral Model of Software Development and Enhancement. ACM SIGSOFT Software Engineering Notes. 11 (4): 14–24.]
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System model

The system model describes the dependencies between the 
components (i.e. subsystems, enabling systems and 
datasets) and their interfaces.13 It is based on the model for 
technical systems published by Ropohl in 1979 as part of the 
systems theory of technology (Ropohl, 2009). The system 
model is initially created in the functional decomposition 
phase and defines the components that are developed with 
the aid of the individual disciplines in the development cycle. 
An example of such a system model can be found on page 13.

Role allocation

Role allocation defines which responsibilities are required 
in which phase. This artifact is initiated in requirements 
& problem specification and is employed and adapted 
in all further phases of the process model. A more detailed 
description of the aspects of role allocation can be found 
on pages 28–29.

Documentation for external testing

Documentation for external testing records the characteristics 
that the overall system or individual components must 
fulfill in order to be tested and accepted by external parties 
(e.g. authorities). The documentation also comprises 
indicators of this fulfillment or reasoning amassed in the 
course of development and testing. Typical examples of such 

Permanent artifacts 

PAISE® has four permanent artifacts. The artifacts are initiated at specific stages  
and are continuously expanded and adapted during the course of development.

guarantees are functional safety and IT security, which can 
also include aspects of data protection provided by the system. 
Furthermore, the documentation may include information on 
explicability, manageability or judicial enforceability. 

Data documentation

The data documentation is a description of the data that have 
been used for the development and testing of the AI-based 
components and are decisive in determining their function. 
Documentation is created during the development cycle 
and continuously expanded and adapted during operation 
& maintenance. Data used should, on the one hand, be 
categorized in terms of their source (e.g. the public datasets 
used, collection and annotation methods, measurement 
methods, environmental conditions), and, on the other 
hand, be presented in terms of their quality (technical 
errors, uncertainties, etc.), scope and initial processing 
(estimation of missing values, enhancement for significantly 
underrepresented populations). The European Commission’s 
proposal for statutory regulations concerning AI, for example, 
calls for appropriate qualities.14

By archiving all data used, requirements such as those set 
by the European Commission can be met to some extent. 
However, this is not always sensible, for example, in the 
case of particularly large volumes of data or in the case of 
online learning systems. Methods can then be used to reduce 
datasets to samples or metadata, for example, or for version 
changes that may use hash values.

13 This consideration is reflected in numerous approaches to how AI or ML-based systems are currently handled. For example, in the mobility sector, with 
ISO 21448 “Road vehicles — Safety of the intended functionality,” there is a transition from conventional faults in individual components to complex risks  
of the overall system.

14 [European Commission. (2021). Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonized Rules on Artificial 
Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Act, Brussels: COM/2021/206 final.]

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206


Guiding questions

• What is the issue to be solved?
• What will be sold to customers? 
• What is the initial state?
• What characterizes the desired end state?
• Which data are to be utilized?
• Are AI methods already in use?
• Can existing ML models be used in the course 

of transfer learning? 

Results

• Documentation of the answers to and conclusions 
drawn from the guiding questions in the form 
of a presentation of the issue and the goals, 
e.g. a project profile

9

Goals & problem specification

In the first phase of PAISE®, the goals to be achieved with the 
product being developed are defined. In addition, a problem 
specification is established. This will be developed in greater  
detail and refined in the subsequent phases. 

In this phase, it is particularly important when organizational 
complexity is high to ensure that the problem specification 
is consistent across all teams and organizations involved. 

The goals can also include business models to be pursued, 
such as whether a product is to be developed and then 
mass-marketed, or whether a specific service is to be rolled out.

15 The example of an automotive emergency braking system was chosen here specifically to improve comprehensibility, given the widespread everyday experience 
in this area. 

Example:15

The development of a camera-based emergency braking 
system for passenger cars is commissioned. The system 
should be able to detect the vehicles driving in front on the 
highway using a single front camera, estimate their distance 
and relative speed, and trigger emergency braking if a rear-
end collision is imminent. In the first phase, it is established 
that the system is required to prevent rear-end collisions with 
a high degree of reliability, that the entire processing chain 
from camera selection to the implementation of electronic 
brake control needs to be specified, and that the company 
commissioning the project does not currently use AI processes 
or have datasets on which to base the development.

Goals & Problem Specification

Requirements  
& solution approaches



At this point, ideas for possible solution approaches are 
derived from the product requirements for the first time.  
This still takes place at the high level. This phase can also yield 
several possible solution approaches, which are then assessed 
in terms of their feasibility. In the subsequent development 
process, work is initially carried out on the approach that 
seems most realistic, which is then fine-tuned. 

If the decision is made to use AI-based solution approaches, 
requirements from legal regulations will also need to be taken 
into account in this phase going forward.16 Examples of such 
additional requirements are documentation requirements, such 
as conceptual decisions regarding procedures for ensuring 
data sovereignty, data management, data collection and data 
preparation or the introduction of a risk management system. 

16 See the European Commission’s proposal for legal regulations regarding AI: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206

Example:

In the course of this phase, it is established that the system is required to work reliably enough to resolve critical situations 
99 percent of the time without the driver’s intervention. Damage can occur as a result of both false-negative activations 
(failure to avoid rear-end collision) and false-positive activations (accidents caused by unnecessary emergency braking).

The system should not continue to learn during driving, but should only be updated as needed through manufacturer 
updates at annual maintenance appointments. The system has a high degree of autonomy over the longitudinal guidance 
of the vehicle in order to assist drivers if they are not paying attention, and it does not rely on drivers themselves to brake 
in time. By the same token, drivers are usually unable to cancel false activations in time. The system does not take over 
the regular task of driving the car, however (distance control, lateral guidance). It is assessed that AI can be used for object 
recognition and distance estimation, but also that detailed traceability of the quality of the results must be provided for 
approval.

10

Requirements  
& solution approaches

In this phase, the requirements for the overall system are analyzed 
and possible solution approaches for implementation are defined. 

Goals & Problem 
Specification

Functional 
decomposition

Requirements  
& Solution Approaches

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%253A52021PC0206


17 Use cases for (partially) autonomous driving can be divided into five levels according to the SAE J3016 standard by the organization SAE International. 
A classification into five levels can also be carried out for production-related use cases, as suggested by Plattform Industrie 4.0 [Plattform Industrie 4.0. (2019). 
Technology Scenario “Artificial Intelligence in Industrie 4.0,” working paper]. 

Figure 2: Illustration of the key requirements for the emergency braking system introduced in the example.

50 m

Safety objective: Use of automated detection 
and emergency braking to prevent rear-end 
collisions caused by inadequate reaction
on the part of the driver.

Benchmark: Activated in at least 99 %
of situations where emergency braking
is required

Safety objective: Prevent rear-end collisions caused by false 
activation of the automated emergency braking system

Benchmark: No more than one false activation in 10 hours
of operation

11

Goals & Problem Specification

Guiding questions

• What risks of harm to people and the environment  
need to be considered? 

• What data should the system use as a basis for  
providing information or making decisions?

• Who should have the rights to the data?
• At what point should the system learn from the data?
• Should AI be able to actively control processes?
• For which requirements can AI be used as solution 

approach?
• Is a greater degree of traceability (explicability)  

of the AI application desired/needed? 

Results

• Prioritized system requirements
• Requirements for the development process
• Selection of the most realistic solution approach  

for the overall system 
• Determination of the benefits and primary focus  

of the AI used in the solution approach and 
the project

• Initial risk assessment of the system
• Classification of the system according to degree  

of autonomy17

• Contractual regulations for use of data

https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/KI-industrie-40.pdf?__blob=publicationFile&v=10
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/KI-industrie-40.pdf?__blob=publicationFile&v=10
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The functions defined in the requirements for the overall 
system are allocated to subsystems. The granularity of this 
subdivision depends heavily on the complexity of the system. 
In addition to this decomposition process, clearly defined 
interfaces are established.

In addition to considering the overall system, this phase 
specifies enabling systems that are not part of the delivered 
system but are necessary for its development. 

It is important to emphasize that the nature of relations 
between components, i.e. between enabling systems and 
subsystems, can vary greatly. Energy flows (e.g. electricity, 
hydraulics, compressed air), information flows (e.g. data), 
power flows and material flows are examples of such relation 
types.

Figure 3 shows an example of this kind of decomposition. 
It should be noted that components can also act as data 
sources. Data sources are considered to be subsystems or 

enabling systems that provide data for development and/
or for operation and thus have a significant influence on the 
functionality of the AI components. 

The decision as to which subsystem is AI-based can be 
made either with the benefit of experience during the initial 
functional decomposition process or during the development 
cycle, which is the stage earmarked for refinement of the 
initial decomposition. It is important to note that the decision 
to use AI is part of the solution approach, not part of the 
requirements. In addition, the need for additional enabling 
systems or subsystems may arise during development. 
Likewise, components can be omitted if it can be shown 
that they are no longer needed. It is therefore important 
to mention that the initial functional decomposition is not 
definitive. It is used for the first iterations of the process and 
should be adapted in the following ones. The functional 
decomposition supports the specific purpose of both the 
conventional components, such as mechanical and electrical 
systems, and the AI-based components. 

Example:

The decomposition process yields the result shown in Figure 3. In the detector, objects are identified in the images captured 
by the camera. In the decision maker, an estimation of the distance and relative speed of the objects is made, and an 
emergency braking decision is made on that basis. If the decision is made to trigger emergency braking, a signal is sent to 
the brake control system, which monitors the hydraulic mechanical brake trigger. The brake is not part of the overall system 
supplied, but is connected to the brake control system via a predefined interface. The detector and the decision maker are 
AI-based subsystems. The mounting position for the camera on the car should be optimized using an AI-based enabling 
system. In addition, data from the camera, when available, should be stored in an internal database to make training data 
available for the development of the detector. However, since the camera is not available from the outset, the detector is 
initially developed on the basis of synthesized camera images and with an externally available dataset of traffic situations 
called “Cityscapes.” The Cityscapes dataset is also used in the development of the decision maker. In the example shown, 
“Camera,” “Internal database,” “Synthesis of camera images” and “Database with Cityscapes dataset” are data sources.

Functional decomposition 

In the third phase, the functions of the overall system are initially 
broken down into subsystems, resulting in a mostly hierarchical 
subsystem specification with well-defined interfaces. This is 
supplemented by the specification of any additional enabling 
systems required. 

Requirements  
& Solution Approaches

Functional 
decomposition

Component specification 
& checkpoint strategy



Interface

Relationship

AI components

Enabling systemsSubsystems

Datasets

Position optimization
Camera

Input

Output

Internal database

Database with
Cityscapes dataset

Synthesis of camera
images

Brake control

Detector

Decision maker

Overall system Legend

Figure 3: Schematic representation of the system model for an emergency braking system as an example.

Guiding questions

• Which subsystems comprise which functionalities?
• What enabling systems are required for subsystem 

development?
• What task is likely to be performed by an AI 

component?
• What data sources are there for training, testing 

and operating AI components?

Results

• (Hierarchical) system and enabling system 
specification

• Location of data sources and datasets for training, 
testing and runtime of AI subsystems or AI enabling 
systems

• Definition of interfaces between subsystems and 
enabling systems

• Schematic representation of the development 
environment

13

Functional decomposition
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The component specification is derived in the first instance 
from the requirements for the overall system and from the 
system model. Specific requirements for the subsystems 
are drawn up and potential component-specific solution 
approaches are devised. These solution approaches are 
reviewed and refined during the development cycle phase. 

Checkpoints are used to synchronize the development 
status of all components and to test the interaction of the 
subsystems within the overall system. To this end, (partial) 
integration of the subsystems takes place at this point, 
together with corresponding verification and validation tests 
with respect to the requirements for the overall system. 
Since the development process can be a different one for 
each component, one can expect the rate of progress to differ 
between components. Not all components are required to 
actively participate in each checkpoint. 

Different strategies can be used in determining when and 
according to which criteria a checkpoint takes place. Although 
traditional milestone planning is possible, and offers many 
advantages in terms of predictability, a more agile approach 
is recommended. The difference between checkpoints and 
formal milestones is that a specific stage of development does 
not necessarily have to be defined. In terms of checkpoint 
planning, the following strategies are possible:

 � The feature-based strategy: A specific feature or 
requirement is to be implemented by the next checkpoint. 
This strategy is based on the implementation of what 
is known as the “user story” in the agile process model 
SCRUM. It is important that only design decisions 

that are necessary for implementing the feature and 
achieving a minimum viable product are made during 
the development stage. Ultimately, this saves costs when 
it comes to making decisions. 

 � The maturity-based strategy: A checkpoint is reached 
whenever a minimum of two subsystems have reached 
a certain level of maturity. In this case, maturity levels 
could be: 

• Preliminary analysis (proof of concept)
• Guarantee of basic functionalities
• Achievement of performance metrics (KPI)
• Performance enhancement/optimization
• Optimization of user friendliness

  Depending on the application, the maturity levels can be 
further specified and subdivided. They therefore constitute 
interim goals on the way to the finished product.

 � The time-based strategy: A checkpoint is reached at regular 
time intervals, e.g. one week. The challenge here is to select 
the work packages up to the next checkpoint in a way that 
makes it possible to (partially) integrate them with all the 
new features at that point. However, given the fact that not 
all components have to participate in a checkpoint together, 
it is also possible to use different time intervals for each 
component.

Both when pursuing a strategy and when combining different 
strategies, it is important that the next checkpoint in each 
case is clearly defined in the refinement step. This includes the 
issues of which subsystems participate in (partial) integration 
and when a checkpoint is reached.

Component specification 
& checkpoint strategy

In this phase, a preliminary version of the component specification 
is created, and a strategy for the checkpoints of the concurrent 
subsystem development is defined.

Functional 
decomposition

Development cycle

Component specification 
& checkpoint strategy



Guiding questions

• Which component-specific solution approaches 
should be pursued?

• What information is available to the AI subsystem 
as an input (feature vector)?

• What quality level does the AI subsystem have 
to achieve and how is it verified?

• What quality of data needs to be available, and at 
which checkpoint, for AI subsystem development 
to move forward? How is the quality level verified?

Results

• Documentation of all initial specifications
• Documentation of the strategy for the checkpoints

Feature-based strategy

By way of example, 2–3 features to be implemented within 
the initial development cycles are shown below for each 
component. A checkpoint takes place as soon as it is possible 
to integrate one of the developed components. 

Camera:
• Elaboration of suitable specifications (resolution,  

frame rate, etc.)
• Procurement of prototype
• Determination of optimum installation position

Datasets:
• Selection of dataset (Cityscapes)
• Interface connection to detector
• Increase in consistency with target application through 

synthetic generation of new camera images 

Detector:
• Comparison with camera specification
• Interface connection to decision maker
• Verification with real-world camera data

Decision maker:
•  Interface connection to detector
• Verification against real-world data from detector

Brake control:
• Elaboration of suitable specification
• Verification of brake implementation on test bench

Maturity-based strategy

The following is an exemplary description of a few maturity 
levels for the overall system using bullet points.

Proof of Concept:
• Test vehicle with camera prototype
• Detector and decision maker were developed using 

Cityscapes dataset
• Brake intervention using series AEB interface
•  Test drives at the test site

Implementation of 70% of the requirements:
• Switch to camera target system
•  No embedded computer in vehicle yet but dedicated 

computing unit on passenger seat
•  Use of real-world target vehicle in development stage
•  Test drives at the test site 

Implementation of 90% of the requirements:
• Hardware and software available in target architecture
•  Performance of emergency braking system still unknown
• Real-life traffic tests with safety driver

Implementation of 100% of the requirements
•  Fully developed overall system with known performance 

that meets requirements

15

Component specification & checkpoint strategy

Example:

The following table compares the aspects of the maturity-based and feature-based strategies for checkpoints.

When dealing with the example in subsequent phases, the feature-based strategy is chosen. At each refinement step, 
goals and features that are to be implemented by the next checkpoint are developed for each component. Examples  
of the initial component specifications for the “Database with Cityscapes Dataset” and “Detector” components are detailed 
on pages 20 and 24, respectively, in the context of the corresponding procedures during development.



16

Refinement takes place on the basis of the results of the 
checkpoint/assessment. The solution approach chosen 
for implementing the respective component specification is 
elaborated in more detail or, if necessary, varied. A variation 
of the component-specific solution approaches is sensible 
in the first cycles of the development cycle in order not to 
exclude any solutions from the outset. In later cycles, work 
should only be done on the detailed design of the solution 
approaches in order to continuously increase the maturity 
of the product. The refinement step takes place in an 
interdisciplinary manner to take into account the dependencies 
between the components. Subsequently, appropriate 
adjustments are made with regard to the system model as well 
as the component specification. In particular, this may involve 
further decomposition of components, for example to avoid 
bottlenecks in development, or additional components may 
be added if, for example, new data sources and datasets are 
included. 

The component specifications that must be met and validated 
are fundamental to concurrent component development. 
Development takes place for each component according to an 
individually suitable and domain-specific procedure. In the case 
of conventional components such as mechanical or electrical 
subsystems, for example, a systems engineering procedure 
can be used. The prerequisite is that this approach can be 
integrated into the cyclical principle described in this work. 
PAISE® specifies the processes for ML component development 
(p. 22) and data provisioning (p. 19).

Once a solution approach has been implemented for 
a component (whether prototypical or refined), it can be 
integrated into the surrounding overall system or the 
surrounding subsystem and validated and verified as part of 

integration tests. Checkpoints synchronize this integration 
of subsystems. Components can also passively participate in 
checkpoints if, for example, the development status does not 
allow for integration. In this case, the development status of 
the previous cycle is used for this component, simulations 
are used, or only the interfaces are tested. Finally, an 
assessment takes place, with corresponding documentation 
of the development status of all components and the results 
regarding the overall system. The documentation process 
should be supported by a versioning process that includes the 
data used, particularly in the case of ML components. 

Overall, the checkpoint serves to focus attention on 
interdisciplinary cross-sectional aspects. In addition to 
considering functional safety or costs, this may also include an 
open discussion on potential ethical conflicts that may arise, 
for example, from the use of incomplete or biased data. Such 
aspects are addressed specifically by the data officer and are 
also incorporated into the data provisioning process.

The “checkpoint-based” cyclical approach outlined above aims 
at ensuring the continuous improvement of the overall system. 
It contains three properties that are essential for AI systems 
engineering from our point of view:

 � It takes into account the fact that the (further) development 
of some components depends on the results of others. 
For example, the development of an ML component 
cannot take place effectively until initial data are available. 
Likewise, the design of a subsystem to be optimized using 
ML-based methods can be started only after the associated 
ML-based enabling system has been developed. The 
interdependencies of the components arise from the system 
model. In addition, a time dependency representation 

Development cycle

Component development takes place in iterative cycles that 
continuously increase the maturity of the overall system. The cycles 
consist of a refinement step, a phase of concurrent component 
development and a checkpoint that includes a progress assessment. 
Eventually, the results lead to a decision as to whether the overall 
system has been completed in accordance with the requirements.

Component specification 
& checkpoint strategy

Development cycle

Handover
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Development cycle

Example: 

All subsystems and enabling systems are developed during this phase. To provide a clear representation in the adjacent figure, 
we have limited ourselves to the camera, detector and decision maker subsystems, as well as to the Cityscapes dataset that 
is provided for developing the detector. The individual actions are only shown in an abstract manner and will be explained 
in more detail with regard to ML component development and data provisioning in the following sections.

At the outset, the Cityscapes dataset is prepared (see detailed example in the following section) and encapsulated as 
a component with a defined interface. At the first checkpoint, the test of the interfaces between the Cityscapes dataset and 
detector, as well as between the Cityscapes dataset and decision maker, takes place. This is successful, so no adjustments need 
to be made to the specifications, decomposition or interfaces during the refinement step. Furthermore, the development 
of an initial prototypical version of the detector (see detailed example on p. 22) and decision maker is defined as the objective 
for the subsequent component development process. At the same time, the selection process for the camera subsystem 
is started.

The camera, detector and decision maker are involved in the second checkpoint. The detector and decision maker have 
been developed prototypically based on indicative specifications. The specified camera parameters are compared with the 
assumptions of the detector; it is found that the selected parameters are broadly consistent with the training and test data 
from the Cityscapes dataset. However, the detector does not reach the required level of detection reliability required by the 
decision maker. In the refinement process, the decision is made to retain the camera specification, but to specify new target 
values for both the detector and the decision maker: The detector needs to improve its performance, and the decision maker 
needs to increase its robustness against detection weaknesses, thus lowering its detector performance requirements. At the 
same time, the camera procurement process begins, and this will run for the duration of the next two cycles. In the course 
of the subsequent component development process, the decision maker achieves the specified target properties based on 
the previous test data. However, during the integration tests at the checkpoint, it emerges that in the interaction between 
the detector and the decision maker, less than 99% of the critical situations contained in the dataset are actually evaluated 
as such. In the refinement process, the decision is made that the greater potential for optimization lies with the detector 
and the decision maker is left in its current state for the time being. Component development now focuses on the further 
development of the detector. At the subsequent checkpoint, the interaction between the detector and the decision maker is 
tested again. In addition, the camera that has been delivered in the meantime can be connected to the detector so that initial 
functional tests can be performed. Subsequent steps include collecting and annotating real data with the target camera system 
to assess the detector’s level of development within the overall system.

similar to that of a Gantt chart can prove useful here, 
although it should be noted that in an agile approach it is 
not possible to use absolute time intervals for planning. 

 � It enables an explorative approach, which is especially 
necessary for the development of ML-based components, 
since it is often impossible to give prior guarantees as to 
whether all requirements can be met. 

 � It provides the framework for risk-based development 
that permits alternative solution approaches, weighs 
them against each other on the basis of prototypes and 
evaluates them in terms of their risks. Thus, it is not 

essential to assume that a component is developed as an 
ML component. For example, it may turn out that ML-based 
methods are not suitable and conventional statistical 
methods should be used. 

 � Particularly during the initial development cycles, it can be 
worthwhile to take a rough look at various alternatives, 
even if they involve a greater risk, as the risk is reduced 
further and further in later phases.18 Risk analysis is 
therefore an essential aspect of this phase. 

Not all cycles need to be the same length; rather, they can 
adapt to organizational circumstances.



19

The specification of the data is adjusted in the refinement 
step. These include both the data sources, which can 
be different for training, testing and runtime, and the 
requirements for the data themselves. 

Requirements may include technical aspects relevant to the 
AI component’s ability to perform its set tasks, such as the 
data volume, quality, i.e. whether information is missing or 
incorrect, and representativeness, i.e. whether the training 
data are representative of the data encountered during 
runtime. In addition, there are overarching non-technical 
aspects such as bias in the distribution of data that can lead 
to unfair decisions (e.g. gender-specific decisions in personnel 
selection), costs for data acquisition or legal aspects regarding 
personal data, which in turn may necessitate additional steps 
such as anonymization or pseudonymization.

The subsequent procedure for data provisioning is based on 
the V-model.20 At a higher level, the first step is to define 
the target metrics against which the data will later be 
evaluated. The target metrics in this case are derived from 
the requirements mentioned above.

This is followed by the experiment or data collection. The term 
“experiment” is used here to refer to data collection under 
controlled conditions. For example, for anomaly detection, 
data collection — with representatives of known anomalies 

Data provisioning 

The data provisioning process aims to generate, prepare and 
evaluate training, test and validation datasets. In doing so, 
requirements regarding the relevance, representativeness and 
correctness of the data are to be met.19 The data form the basis 
for the development and functionality of AI components.

and the normal state — can be performed using guided 
experiments. In the case of supervised learning, this facilitates 
the labeling process, i.e. assigning target values that are to be 
predicted by an ML-based algorithm. The data collection step 
also includes the recording of data under realistic conditions 
and the collection of artificially generated data, e.g. from 
simulations, or the augmentation of an existing dataset using 
data augmentation techniques. Similarly, a selection of public 
datasets may be considered at this stage. 

The raw data acquired are screened and prepared during the 
data preparation process with regard to the issue presented. 
The specification is used as a basis for deriving features, 
i.e. input characteristics, for example. These features form 
the basis for the correct functionality of the ML component. 
Feature selection is based primarily on domain or expert 
knowledge, but significance considerations may also be 
relevant here.

In addition, the techniques of aggregation of multiple data 
points, noise removal or even filtering of incomplete data 
points can be used in this step. Another useful method is that 
of data imputation, i.e. estimating missing values. For example, 
if a sensor fails for a brief period, the corresponding feature 
and the incomplete data points can still be used. Furthermore, 
multiple features can be combined into a new feature to 
reduce the scale and thus the complexity of the data points.

18 c.f. spiral model [B. Boehm. (1986). A Spiral Model of Software Development and Enhancement. ACM SIGSOFT Software Engineering Notes. 11 (4): 14–24.]

19 These three aspects are stipulated in the European Commission’s proposal for statutory regulations concerning AI [European Commission. (2021). Proposal for 
a Regulation of the European Parliament and of the Council Laying Down Harmonized Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending 
Certain Union Legislative Act, Brussels: COM/2021/206 final.]

20 [B.W. Boehm. (1981). Software Engineering Economics, Prentice Hall.] [J. Friedrich, M. Kuhrmann, M. Sihling, U. Hammerschall. (2009). Das V-Modell XT. 
Informatik im Fokus. Springer, Berlin, Heidelberg.]

Development cycle

Component specification 
& checkpoint definition

Handover

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
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Component specification& checkpoint definition

In the case of supervised learning in the context of 
classification, the data are annotated in this step, i.e. the 
data points are assigned to their respective classes, if 
this has not already been done automatically when the 
data were recorded. As part of the development, the 
AI component can also be furnished with information 
regarding the relationship between data points and classes. 
Depending on the requirements, data anonymization or 
pseudonymization techniques are also applied in this step. 
While some of the processing steps are only necessary 
for training, testing and validation data (e.g. annotation), 
some methods must also be applied to runtime data for 
consistency reasons (e.g. noise removal, data imputation, 
combining multiple features, etc.).

Data assessment is the final step in the data provisioning 
process. This is where the previously defined target metrics 
relating to the data requirements come into play. In addition 
to the technical aspect, data assessment also plays an 
important role from a legal point of view when evidence 
has to be provided to external organizations. According 
to the EU proposal, appropriate governance and data 
management procedures are to be used for this purpose.

The processed and evaluated data will be made available 
for AI component development upon successful completion 
of the step.

It should be emphasized that the data preparation process 
does not necessarily have to be a manual one. In this case 
in particular, there is huge potential for the automation of 
individual work steps or sequences of steps.

Data provisioning Checkpoint/assessmentRefinement

Speci�cation Provisioning for ML
subsystems/tools

Data assessmentDe�nition of target metrics

Data preparationExperiment/data
collection

Assessment

Data acquisition

Figure 5: Schematic representation of the data provisioning procedure

Example:

For the subsystem developments of the detector and 
decision maker, vehicle camera image data are required 
in which the vehicles driving in front are annotated. Since 
these data are not available at the start of the project, the 
publicly available Cityscapes dataset is used, which contains 
actual vehicle camera images with manually annotated 
objects. As part of the data provisioning process, it must be 
checked to what extent the dataset is compatible with the 
target application, i.e. how representative it is (for example, 
in terms of camera resolution, driving scenarios, etc.). In the 
following, we will limit ourselves to the aspect of driving 
scenarios by way of example. For this purpose, the first 
step is to define target metrics for the traffic situation in 
the Cityscapes dataset. In the next step, the dataset is 
downloaded from the provider for evaluation. In the data 
provisioning process, images that only show people walking 
or cycling are filtered out, as these are irrelevant for the 
target use case of highway driving. In the final step of the 
data assessment process, the entire dataset is assessed once 
again in terms of the representativeness of the scenarios. 
It emerges that the scenarios are acceptable for preliminary 
development, but contain insufficient data from the target 
use case. Cityscapes places considerable focus on urban 
scenarios, whereas the target application is primarily 
aimed at highways. Cityscapes is deemed to be sufficient 
as a data source for the initial prototype development of 
the detector. However, later in the project, images will be 
artificially generated using an enabling system — a vehicle 
simulation — and then post-processed using AI techniques 
to make them more realistic. Finally, as soon as it is available, 
measurement data from public transport will be collected 
and manually annotated using the actual target camera 
system. In addition to the issues of representativeness and 
data quality, there are also data protection issues for this 
kind of data.
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Figure 6: Potential data sources and challenges in the sample application.

a)  Real data from the Cityscapes 
dataset.

d)  Simulated image data from 
a 3D rendering engine.

b)  Data from the actual target 
camera system.

e)  Simulated image data, enhanced 
with machine learning techniques 
such as generative adversarial 
networks.

c)  Training and testing data must 
also cover the scope of the target 
challenges. 

f)  Simulated data can provide anno-
tations automatically.



22

This process is intended to encapsulate an ML model (i.e. the 
data-driven learned part) in a component that is specified as 
precisely as possible. This creates an organizational interface 
between the traditional discipline of data science and systems 
engineering.

The starting point is the specification of the component in 
the context of the surrounding system, which is detailed 
and adapted iteratively during the refinement process. 
The specification includes, among other things, the 
ML method (e.g. neural network, decision tree, etc.) as 
a possible solution approach based on the component 
requirements. In choosing this, both higher-level requirements 
for the overall system (e.g. the traceability of decisions) 
and direct dependencies on other components (e.g. limited 
computing resources, availability of data, availability of target 
variables) are taken into account. 

The first step deals with the integration of data sources for 
training, testing and validation. It may well happen that the 
data sources and thus the interfaces are not the same in every 
cycle, e.g. if data are available in tabular form initially and later 
in a database.

In developing the test and validation metrics, global cost 
functions are derived from the component requirements 
that lend themselves to data-driven assessment. Domain 
knowledge should be incorporated here in order to be able 
to test ML components individually, but with reference to their 
function within the overall system. 

The ML procedure is implemented as a concrete ML architecture 
in the next step, with specified hyperparameters. Examples 
include defining the number of neurons and layers in artificial 

neural networks and defining the local cost function and 
learning rate. 

In model training, the ML architecture is transformed into 
an ML model suitable for the functionality to be fulfilled. 
Since the results of the learned model depend heavily on the 
ML architecture, i.e. the chosen hyperparameters, these are 
varied several times. The aim is to find the hyperparameter 
configurations that yield the best model on the basis of the 
local cost function and a validation dataset. In many cases, 
this hyperparameter optimization can be partially or fully 
automated using appropriate tools (e.g. auto-ML systems).

In the subsequent model assessment, a test dataset and the 
previously defined test and validation metrics are used to 
evaluate the quality of the learned and optimized ML model. 
Thus, the accuracy and performance of the model can be 
evaluated in terms of previously unseen data and metrics 
tailored to the component functionality to be fulfilled. 

Model packaging as a component is the final step in 
ML component development. At this point, the trained and 
validated ML model is prepared in such a way that it can be 
deployed on the target platform. While previously the model 
was validated on the basis of data only, now it is ensured that 
the model is capable of running on the target platform, for 
example on a resource-constrained embedded system, where 
it provides comparable results. 

Actual integration of the components into the higher-level 
system takes place at the checkpoint. It is only at this point 
that tests reveal whether the specification and the derivation 
of the architecture have been successful and whether the 
metrics achieved on a component-specific basis also have 

ML component development 

The process of ML component development is based on the 
V-model21 as established in the field of software and systems 
engineering. The aim is close integration with ML enabling 
systems and data sources to allow iterative integration and 
validation of results within checkpoints.

21 [B.W. Boehm. (1981). Software Engineering Economics, Prentice Hall.] [J. Friedrich, M. Kuhrmann, M. Sihling, U. Hammerschall. (2009). Das V-Modell XT. Infor-
matik im Fokus. Springer, Berlin, Heidelberg.]
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Guiding questions

• How can requirements be translated into test and 
validation metrics?

• Which cost functions are suitable for model training?
• Which ML method is suitable for producing an optimal 

component in terms of the overall system?
• What improvements can be made as a result of changes 

to other subsystems (e.g. data)?
• Do external providers offer AI components that 

can be used and further developed?

Results

• ML component with clear documentation 
of requirements, data and tools used

• Results from the evaluation of test and validation 
metrics

• Assessment of potential for improvement 
depending on other subsystems

• Continuous testing and monitoring approach 
for the ML component using test and validation 
metrics

23

Component specification& checkpoint definition

ML Component Development Checkpoint/assessmentRefinement

Component speci�cation IntegrationModel Packaging 
as ComponentIntegration of data sources

Model veri�cationTest & Validation 
metrics

Further solution 
approaches

Integration tests

ML architecture Model training

System

Learning architecture

Model search

Hyperparameter optimization

Figure 7: Schematic representation of the ML component development process.

a positive effect on the overall system. If this is not the 
case, additional cycles are necessary. In these cycles, further 
solution approaches, such as other ML methods, are tested 
in coordination with the other components. The goals of 
additional cycles could also be optimizations that go beyond 
the requirements, such as increasing the prediction accuracy 

of the ML system. To control the development process, it is 
important that metrics are translated into specific estimates 
of costs and risks within the checkpoint on the basis of the 
reports created, so that decisions can be made regarding 
further development.
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Example: 

For this insight, the focus is on the subsystem development of the detector. The aim is to detect vehicles driving in front in 
the video stream of a single camera. By way of example, the development is illustrated here using an existing external dataset 
called “Cityscapes.”

In the context of component specification, the following solution approach is rated as promising: The task is to be solved 
using an artificial neural network for the recognition of objects in individual images, which is run on a small GPU-based 
computing unit. The neural network receives camera images via an Ethernet interface, and forwards results to the decision 
maker via a RAM interface, which is also run on the same computing unit. The aim is to achieve at least two detections per 
vehicle within one second of visibility at a distance of up to 50 meters. In the case of less frequent detections, the tracker is 
allowed to dismiss the object as a false detection. The error rate must be less than 0.2 percent for this detection task.

During the process of integrating the data interfaces, the technical interfaces in the target system (Ethernet streams of 
camera images) are converted into operational interfaces (video images in RAM), and the AI-related software portions 
of the component are detached from the embedded hardware so that they can be developed, trained and tested on a PC 
or in a computing cluster, for example. The decision is made that the system will initially be developed in the programming 
language Python and, due to the lack of datasets from the real-world system, will use an existing annotated vehicle dataset, 
Cityscapes,22 which is fundamentally similar to the target system.

As part of the development of test and validation metrics, component requirements (two detections per second) are adapted 
to the requirements of the specified ML process. Since this method only uses a single image evaluation, it is not possible to 
adopt time periods directly. A frame rate of 25 frames per second is assumed and it is a requirement that each object must be 
detected at least twice over the course of 25 consecutive frames. Furthermore, this requirement may only be breached for less 
than 0.2 percent of the objects in the dataset.

In the process of choosing the ML architecture, a “Mask R-CNN” approach23 is selected that recognizes individual objects 
based on their image pixel regions. To train this neural network, the cost function must be broken down into individual 
images and their pixels. So, even though “recognized” vs. “not recognized” is supposed to be evaluated for an entire image, 
a corresponding cost function is unsuitable for training. It is more practical to “punish” each misclassified pixel in training — 
and evaluate the performance of the neural network using the common mIoU metric24. This is where a major disconnect 
in requirements occurs: We are training a network that recognizes object outlines as precisely as possible in order to obtain 
an ML component that recognizes objects as frequently as possible.

Thus, the model is trained on the basis of the mIoU metric using the Cityscapes dataset. If the results are not satisfactory, 
hyperparameters, such as the number of layers in the neural network, can be adjusted.

In the model assessment process, the ML model is evaluated on the basis of the frame sequences, i.e. object outlines from 
the Mask-R-CNN result are checked for sufficient size and this metric is applied to image sequences from the Cityscapes 
dataset to evaluate whether the target of two detections per 25 frames is met, in the Cityscapes dataset at least.

In the context of model packaging as a component, the system is transferred to the GPU computing unit, and the Cityscapes 
dataset images are imported as a simulation via the real-world Ethernet interface to mimic a real-world video stream. Here, 
the benchmark of two detections per second is tested on the real-world component platform, but (in this iteration) still 
without real-world data.

At the checkpoint, the component can now be assessed for compatibility with the components developed concurrently in 
terms of its specifications and the achieved quality of results.
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22 cityscapes-dataset.com [M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth and B. Schiele. (2016). The Cityscapes 
Dataset for Semantic Urban Scene Understanding. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)] 

23 A system based on a neural network used to recognize objects in images. [K. He, G. Gkioxari, P. Dollár, R. Girshick. (2017). Mask R-CNN. Proceedings of the 
IEEE International Conference on Computer Vision, pp. 2961–2969.]

24 The “mean intersection over union” metric evaluates the average overlap between the machine-detected object and the real-world known object.

25 [L. Sommer et al. “Multi Feature Deconvolutional Faster R-CNN for Precise Vehicle Detection in Aerial Imagery," 2018 IEEE Winter Conference on Applications 
of Computer Vision (WACV), 2018, pp. 635–642]

Figure 8: Schematic representation of an R-CNN. Adapted from25.

https://www.cityscapes-dataset.com/


Guiding questions

• How can changes in data distribution that lead 
to changes in the behavior of ML components be 
detected?

• What criteria should be used as a basis for initiating 
maintenance work, for example re-training an 
ML model?

• How can the model be monitored for erroneous 
behavior?

• Who is responsible for erroneous behavior 
if the system continues to learn during operation?

Results

• Operating manual
• Documentation for the company’s service 

department
• Maintenance concept (including updates 

to the AI component(s))
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The information required for the operation phase is 
prepared for the users and the service team, e.g. in the 
form of an operating manual. This includes escalation levels 
when error states are detected in the system. Especially 
when using ML-based systems, issues concerning the 
consistency of the model and the concepts for detecting 
erroneous models must be clarified conclusively.

Depending on the type of system in question and on its 
level of autonomy and the assessment of risk to humans 
and the environment, additional constraints, such as 
reporting requirements and declarations of conformity, 
must be addressed in this phase. This specifically concerns 
high-risk AI systems.

Handover 

In this phase, the finished product is transferred from the 
development team to the organizational units that take care 
of operations and maintenance. To this end, documentation 
is prepared for the users and, if applicable, a service team. 
Specifically for AI systems, issues related to error-proneness 
and maintenance (retraining) of ML models are addressed. 

Example:

The system is handed over to the contracted company. 
The latter analyzes both the design principles and 
the quality of results on the basis of the artifacts and 
verifies acceptance. It is specified that ML-based object 
recognition is based largely on inventory datasets of 
vehicle images, and may not be able to capture future 
manifestations (e.g. the possible prevalence of shuttle 
minibuses, which are not included in the dataset). It is 
specified that the system monitors itself to a limited extent 
by running comparisons against simple non-ML processes. 
Firstly, regular data collection runs are necessary for 
providing updated datasets for re-testing and re-training, 
and secondly, vehicle parameters need to be updated, 
potentially on a yearly basis. The fact that deployment 
of the system must be registered and regularly checked in 
the course of maintenance work on account of its nature 
as a high-risk AI system is communicated to the relevant 
authorities.

Handover

Development cycle

Operation & maintenance 
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Example:

During operation, the system parameters are checked 
as part of the annual maintenance intervals, and 
abnormalities that have occurred during self-monitoring 
of the system are analyzed. Regular data collection is 
carried out, and new registrations of other vehicles with 
unusual shapes (e.g. new types of shuttle minibuses) are 
investigated specifically to determine whether the braking 
system achieves a sufficiently high detection rate for these 
vehicles.

With regard to AI subsystems, this phase includes, 
in particular, the monitoring and regular review of the 
ML models. Some AI-based systems are tested (and possibly 
also certified) before they are delivered and are no longer 
modified during the operation phase. In contrast, other 
AI-based systems are continuously updated using data from 
operations. There are numerous gradations between these 
two extremes.

Changes in the data processed during operation can 
degrade the performance of AI subsystems over time. 
Such changes can be caused both by latent influencing 
variables (e.g. temperature, humidity, etc.) and by changes 
in the intended use (e.g. foreign traffic signs, new material 
processed in the machine, etc.). 

The trigger for updating the AI subsystem can be set both 
statically and on the basis of data collected during operation. 
In the latter case, metrics concerning model quality or changes 
in the distribution underlying the data are used. The collected 

data are processed in the context of data provisioning 
(see p. 19) and prepared for the further development of 
the AI subsystem, which takes place in a subsequent step 
with the aid of the ML component development procedure 
(see p. 22). Finally, the updated component is reintegrated 
into the overall system, tested and put into operation.

Operation & maintenance 

In the final operation & maintenance phase, the service and 
maintenance concept defined in the previous step is implemented. 
The aim is to ensure full functional capability during operation.

Subsystem development

Data provisioning

ML component 
development

Subsystem development

Monitoring

Operation Maintenance

Figure 9: Schematic representation of the substructure of the operation & maintenance phase.

Operation & maintenance 

Handover
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The roles and expertise that we consider most important are 
listed below. In the requirements & solution approaches 
phase, the need for each role should be assessed and a person 
should be assigned. It is also possible for several roles to be 
assigned to one person.

Project sponsor/commissioning company: The project 
sponsor or the commissioning company approves the budget 
for the project and specifies the assignment to be worked on. 
From this point onwards, the framework conditions, goals 
and requirements are defined and regular information on the 
project status is requested. 

Project management: Project management organizes and 
structures the project. It establishes or requests the resources 
needed to meet the goals and maintain contact with the 
project sponsor. Project management is also responsible for 
mitigating any significant organizational complexity by creating 
teams, assigning responsibilities and ensuring communication 
to make the project a success. 

Domain experts: Domain experts demonstrate a high level 
of understanding of the application domain that the data 
for AI component development come from. The expert has 
a particularly active role to play in applications with a high 
degree of relevance to physical reality.

Safety officers: They deal with the issue of functional 
safety in highly critical systems, prepare risk assessments and 
assessments and are responsible for ensuring that the required 
critical limits are met. 

Other tasks performed by safety officers include assessing 
the risks that arise in the event of an application failure and 
initiating appropriate preventive measures.

Users/operators: Users assess the practicality of the 
application and point out deficiencies, and therefore have an 
advisory function. In particular, they have experience in the 
human-application interface. 

Automation engineers: Automation engineers ensure that 
the commands generated by the software are implemented by 
deploying the process control system. This expertise is required 
more than ever when there is a high degree of autonomy, 
since decisions made by AI-based components must be 
passed on automatically to the actuators.

AI experts: AI experts create data-driven models and validate 
and verify them. They have a basic understanding of the 
relationships underlying the data.

IT security officer: The purpose of this role is to ensure the 
“confidentiality of data” and “integrity of the application.” 
If AI-based processes are to be used, data will need to be 
processed, both in the development and in the operation of 
the system. According to GDPR, personal data in particular 
must be safeguarded against misuse, but internal company 
data can also become a target for hackers. Ensuring the 
invariability of an application’s function is an integral 
aspect of preserving the application’s integrity. This is 
about preventing a situation where the application is used 
for purposes other than those for which it was designed, 
for example, teaching the wrong things to a continuously 
learning system.

Software development: Software developers create 
the software architecture, coordinate the development 
process and carry it out. Throughout the process, they work 
closely with AI experts to integrate the AI models that they 
create.

Role allocation

Projects and undertakings in the field of AI systems engineering are usually interdisciplinary 
and can be very complex. Therefore, a distribution of roles is required that clearly defines 
competencies and responsibilities. 
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Role allocation

IT infrastructure experts: IT infrastructure experts create 
the architecture of the IT system, including the necessary 
interfaces, required computing resources, communication 
channels, etc. They liaise closely with the AI experts.

Responsibilities in PAISE®

In the following, the roles described are classified according to the RACI matrix in each phase of the overall system development 
process26. Thus, the respective role is categorized as Responsible (R), Accountable (A), Consulted (C) or Informed (I). 
In the component specification & checkpoint strategy and the development cycle phases, all roles except project management, 
commissioning company and users are required to fulfill their responsibilities with regard to the components that relate 
to their expertise.

Data officers: They deal with legislative issues that affect 
the data. This includes, for example, assessing whether the 
data used are personal and therefore subject to specific 
protection.

Responsibilities according to RACI Responsible (R), Accountable (A), Consulted (C), Informed (I)

Role/phase
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Legend: 

1st phase: Goals &  problem specification, 2nd phase: Requirements &  solution approaches, 3rd phase: Functional decomposition  , 4th phase: 

Component specification &   checkpoint strategy, 5th phase: Development cycle, 6th phase: Handover, 7th phase: Operation & maintenance
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In the following, potential application scenarios that generate 
optional links between phases are explored. In particular, 
this relates to optimization and agile enhancement based 
on operation. 

Optimization of the AI subsystem, based on 
operational data: 

The system is validated with respect to the specified 
requirements and operation domain by means of careful 
testing. However, unforeseen environmental conditions, user 
behavior or system interactions that were not considered in 
the original specification may occur during operation. Special 
cases that usually result from a combination of several extreme 
boundary conditions are important in this respect. These new 
findings are essential for continuous system optimization. 
If these data are available to the development team, individual 
subsystems can be optimized. The updates can be fed back 
directly into operations or result in new releases. This link 
differs from regular maintenance in that regular maintenance 
is scheduled and performed either by the operator of the 
overall system or by a service team. During optimization, 
the development team takes action again to improve the 
general behavior of individual components.

Agile enhancement of the overall system, based on 
operational data: 

Agile enhancement makes use of the DevOps approach.26 
As with optimization, the experience gained during 
operation can provide impetus for further developments. 
While optimization improves existing product functions, 
agile enhancement goes one step further. At this point, 
we ask ourselves which other problems can be solved by 
the product, and which functionalities can be added to 
the overall system. For that reason, agile enhancement 
requires a re-run of the entire process model, albeit 
perhaps in a simplified manner, since existing systems 
and documentation can be used as a basis.

Optional links 

The previous description of PAISE® followed an acyclic approach, with the exception of the 
development cycle. In the following, optional links are discussed. These enable you to leave 
a phase, for example, the operating phase, and return to previous phases. 

26 The term is derived from “development” and “operations” and describes an approach that is intended to improve collaboration between software development 
and IT operations. A continuous transition between development and operations is envisioned, with small incremental updates being made and lessons learned 
from their operations being fed back into development.
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Optional links 
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Figure 7: Enhancement of PAISE® with optional links.
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Glossary

AI Systems Engineering
Translation of KI-Engineering

Checkpoints
Synchronization point for component-by-component 
concurrent development in an iterative approach.

Data source
Subsystem or enabling system with well-defined interfaces 
that provides data for the operation and/or development of an 
AI-based subsystem or enabling system.

Dataset
A set of data that are related in terms of content and are 
grouped together for further processing.

Permanent artifact
A result that is produced in the course of a project and is 
continuously refined and adapted.

Functional decomposition
The decomposition of a system into subsystems that perform 
individual functions.

Overall system
The arrangement of individual interacting subsystems that 
together exhibit behaviors and functions that the individual 
subsystems do not achieve.

Enabling system
A system that is required during the development and 
maintenance of a subsystem, but is not included in the 
delivered product, i.e. the overall system.

High-risk AI system
A subset of AI systems that perform safety-critical tasks 
according to the EU’s current ARTIFICIAL INTELLIGENCE ACT 
proposal. These systems are subject to stricter regulation.

AI-based
AI has a significant influence on functionality. In the case of 
components, this can be due to the integration of AI methods 
in the component as well as the use of AI methods to develop 
and maintain the components.

AI Systems Engineering
Addresses the systematic development and operation of 
AI-based solutions as part of systems that perform complex 
tasks. Translates the term KI-Engineering. 

Component
A subsystem or enabling system.

Artificial Intelligence (AI)
The property of an IT system that exhibits intelligent behavior 
akin to that of a human (German Research Center for Artificial 
Intelligence).

Machine learning processes 
Methods in the field of machine learning.

Machine learning (ML)
A branch of artificial intelligence that involves algorithms that 
detect regularities and patterns in datasets and use them to 
derive solutions to problems.

ML algorithm
An algorithm that implements a machine learning procedure.

ML-based
Machine learning processes have a significant influence on 
functionality. In the case of components, this can be due to 
the integration of ML processes in the component as well 
as the use of ML processes to develop and maintain the 
components.
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Glossary

ML component
A component in which machine learning techniques are used.

ML model
An abstraction of some aspects of reality. Machine learning 
processes create a model based on data in order to solve 
a task.

Process Model for AI Systems Engineering (PAISE)
A process model for AI systems engineering.

Process
A number of activities that are intended to lead to a defined 
result.

Subsystem
A system that fits hierarchically into an overall system or 
a higher-level system.

Systems Engineering
An interdisciplinary approach for developing and implementing 
complex technical systems in large projects.

Acronyms

AI
CC-KING
KI
ML
PAISE

Artificial Intelligence
Competence Center KI-Engineering Karlsruhe
Künstliche Intelligenz 
Machine Learning
Process Model for AI Systems Engineering
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Publishing notes

CC-KING is the Competence Center for AI Systems Engineering 
of the following Karlsruhe-based research institutions: the 
Fraunhofer Institute of Optronics, System Technologies and 
Image Exploitation IOSB (in charge), the FZI Research Center 
for Information Technology and the Karlsruhe Institute of 
Technology (KIT). CC-KING is the interface between cutting-
edge AI research and established engineering disciplines, 
and thus aims to facilitate the application of AI and machine 
learning methods in practice.
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