
CC-KING
Competence Center
for AI Systems Engineering

www.ki-engineering.eu

PAISE®
The process model for AI systems engineering

in cooperation with:

Karlsruhe Institute of Technology

https://www.ki-engineering.eu/

CC-KING
Competence Center
for AI Systems Engineering

2

Contents

Contents

Introduction . 3

The challenges of developing AI-based systems . 4

PAISE® — the process model . 6

Permanent artifacts . 8

Goals & problem specification . 9

Requirements & solution approaches . 10

Functional decomposition . 12

Component specification & checkpoint definition . 14

Development cycle . 16

Data provisioning . 19

ML component development . 22

Handover . 26

Operation & maintenance . 27

Role allocation . 28

Optional links . 30

Glossary . 32

Publishing notes . 35

3

Introduction

The discipline of AI systems engineering seeks to integrate
methods of artificial intelligence (AI) from an engineering
perspective into the design, development and operation of
technical systems consisting of hardware and software in
a systematic, predictable and reliable manner. This objective
is driven by the considerable potential offered by the use of
machine learning (ML) in particular. In the field of data
interpretation, these methods are sometimes able to achieve
results (performances) that could not have been achieved
with conventional methods despite decades of development
work.1

In the past, AI was primarily based on conventional algorithms,
such as knowledge-based or rule-based systems. These
software systems were programmed by human operators and
are specifically tailored to individual use cases. Advancements
in computer processing power over the past few decades,
coupled with increasing availability of data, have facilitated
and progressively expanded the use of data-driven processes.
Consequently, machine learning as a subcategory of AI
algorithms is gaining more and more practical prominence.
Simply put, the ML algorithm programs software to perform
a given task. The automatic programming is done by analyzing
what are known as training data in order to identify patterns
and relationships. Therefore, the functionalities of the created
software are largely determined by the composition and quality
of the training data.

While this approach results in an immense gain in efficiency
in development, it also necessitates a suitable process.
Conventional process models require a manually specified

and systematically testable system and are only compatible
with machine learning methods to a limited extent. At
present, the only testing methods available for machine
learning are empirical ones — regardless of whether ML is
built into the final product2 or whether ML-based methods
are used to develop a conventional final product.3 As soon
as the results of complex ML-based methods influence the
suitability of the final product in a critical way, it is necessary
to be able to trace this influence back to first principles.
The ML-based methods used and the underlying data need
to be monitored in a well-founded manner during system
development. After an ML-based component has been
delivered, it must also be ensured that the product continues
to function reliably under changed environmental conditions,
for example.

The challenges for project management for which the PAISE®
process model offers solutions are presented below.

Introduction

The process model for AI systems engineering, PAISE® for short, was developed at the
Competence Center for AI Systems Engineering (CC-KING). PAISE® comprises the systematic
and standardized development and operation of AI-based system solutions. Approaches
from computer science and data-driven modeling are combined with those from traditional
engineering disciplines, such as systems engineering.

1 Deep learning methods are capable of outperforming human subjects when it comes to image interpretation, for example [D. Ciresan, U. Meier, J. Schmidhuber.
(2012). Multi-column Deep Neural Networks for Image Classification. IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649.].

2 For example, when decisions learned during operation are made or when the program is modified to an even greater extent, i.e. it continues to learn on the
basis of the data during operation.

3 For example, to select suitable materials or design parameters using ML-based methods.

Notes on text formatting

The definitions of terms written in bold type and
italics can be found in the glossary (p. 32). Terms in blue
correspond to the phases of PAISE®

4

Systems engineering offers formalized approaches to
organizational challenges, such as interdisciplinary collaboration
in the development of complex technical systems. Software
solutions, such as embedded software on a microcontroller
or programmable logic controller, are fundamental to many
domains including medical engineering, mechanical and plant
engineering and mobility.

Nowadays, for example, process models that were originally
used for software development and were transferred to
systems engineering are used for the development of complex
technical systems. Examples include the waterfall model,5
the V-model6 and SCRUM.7

Two specific challenges in the development of AI-based
systems have been identified and need to be addressed during
the development process:

1. It is often the case that the performance of an AI-based
approach cannot be estimated in advance, but must instead
be determined empirically.

2. Data-driven methods such as machine learning require
operational data as early as the development stage.

These two aspects are explained in more detail below, along
with their respective impact on the technical development
process (see ISO/IEC/IEEE 15288:2015). The aim of PAISE® is
to provide a solution that meets a high standard of technical
quality. Commercial aspects and company-specific processes
are not addressed in this document.

1. It is often the case that the performance of an AI-based
approach cannot be estimated ahead of time, but must be
determined empirically instead.

In a development process based on the waterfall model,
a high-level architecture8 is derived from the requirements and
refined step by step. In the context of a certification of critical
systems, these steps of derivation and refinement must also be
documented in a comprehensible manner.

In many traditional engineering disciplines, it is possible
to design a high-level architecture for a system according
to requirements without having to test functional aspects
using prototypical means. This is made possible with modeling
that is based on physical models, empirical values and
simulations.9

The challenges of developing AI-based systems

The discipline of AI systems engineering4 evolved from the discipline of systems engineering.
While systems engineering methods and techniques are now applied successfully
in developing complex technical systems, the use of AI within such systems poses new
challenges for the development process.

4 https://www.ki-engineering.eu/de/was-ist-ki-engineering.html

5 [W. Royce. (1970). Managing the Development of Large Software Systems. Proceedings of IEEE WESCON 26 (August), (pp. 1–9).]

6 [B.W. Boehm. (1981). Software Engineering Economics, Prentice Hall.] [J. Friedrich, M. Kuhrmann, M. Sihling, U. Hammerschall. (2009). Das V-Modell XT.
Informatik im Fokus. Springer, Berlin, Heidelberg.]

7 [K. Schwaber, M. Beedle. (2002). Agile Software Development with Scrum. Prentice Hall, Upper Saddle River, United States]

8 In PAISE®, the high-level architecture corresponds to the system model created in the functional decomposition phase and is refined and adapted during
the development cycle phase.

https://www.ki-engineering.eu/de/was-ist-ki-engineering.html

5

The challenges of developing AI-based systems

In the case of AI processes, however, it is more difficult
to estimate performance theoretically or on the basis of
empirical values, since the high-level architecture can only
be conclusively determined to a limited extent. Particularly
when the performance is governed by rare special cases,
implementation details can result in significant differences.

Therefore, when AI-based algorithms are tightly integrated
into an overall system, it is often the case that they must
be implemented in advance, at least in prototype form.
The performance of the implementation in relation to the
requirements is then empirically tested before the high-level
system architecture can be finalized. This aspect can be
taken into account by means of an iterative procedure that is
incorporated into the development cycle phase in PAISE®.
The high-level architecture is iteratively refined and adapted.

In some cases, it is not possible to refine the high-level
architecture iteratively because of certain framework
conditions, for example because the development of individual
components is to be outsourced to external companies. In this
case, preliminary developments of AI-based components can
be useful for estimating the performance, so that the high-level
architecture can be determined reliably and iterative adaptation
is no longer necessary. Then again, such an approach leads to
a loss of flexibility, which can mean that the solution that is
technically optimal is ruled out from the outset.

2. Data-driven techniques, such as machine learning, often
rely on operational data during development.

Data-driven methods such as machine learning require
high-quality data to learn their behavior from. Quality is
determined, among other things, by how representative the
data used for learning (training data) are for the intended use

9 An example of a supporting tool is the Modelica modeling language, in which multi-physics simulations can be easily combined with predefined libraries
of reusable building blocks.

10 https://www.iosb.fraunhofer.de/de/projekte-produkte/ml4p-maschinelles-lernen-fuer-produktionsprozesse.html

11 External data sources are used in the field of image recognition on a frequent basis. Additional image data are either available free of charge or can be
purchased from commercial providers.

case. The challenge here is that the training data required
during development should, if possible, come from the
actual application of the system, which has not yet been fully
developed.

In the ML4P (Machine Learning for Production10) process
model of the Fraunhofer-Gesellschaft, the starting point is
an existing production facility into which machine learning
methods are to be integrated (brownfield development). In
this case, it is possible to obtain high-quality training data
from the existing facility. If, on the other hand, an AI-based
system is developed from scratch (greenfield development),
real data from the system itself are not available until after
commissioning. However, since development is supposed to be
carried out with the aid of these data, other approaches must
be taken into account. Possible alternatives include:

 � Phased implementation: The data are generated by an
existing technical system into which AI is to be integrated.

 � Measurement campaigns: Data are generated under
controlled conditions in dedicated measurement campaigns
and series of experiments, possibly under slightly different
conditions from those in the use case (laboratory conditions).

 � Simulations: Data are generated by simulations of the
technical system.

 � External data sources: Data from external providers are
incorporated.11

Data sources, both for development and operation, must
therefore be taken into account from the outset during system
development. In PAISE®, datasets are also included in the
system model, and time and resources must be allocated for
their development. This aspect is taken into account in PAISE®
in a separate process called “data provisioning.”

https://www.iosb.fraunhofer.de/de/projekte-produkte/ml4p-maschinelles-lernen-fuer-produktionsprozesse.html

6

The primary application domains for PAISE® are mobility
and production, whereby different application scenarios are
addressed. These scenarios include both the one-off customer-
specific development and implementation of AI-based
systems and the development of entirely new products that are
to be manufactured and sold in multiple versions. The PAISE
process model is shown schematically in Figure 1.

The subsystems of an overall system provide their own
individual functionalities that are independent of one another,
have clearly defined interfaces and can also be broken down
into smaller parts. Machine learning (ML) can, on the
one hand, be integrated into subsystems directly and, on
the other hand, be used in the development of enabling
systems. Subsystems and enabling systems can be classified
as AI-based and/or as a data source. In addition, datasets
are developed individually. Subsystems, enabling systems and
datasets are referred to as components in PAISE®.

The use of machine learning poses inherent risks during
the development process.12 Such risks arise, for example,
from the dependence on data quality, which can lead to
a limitation of functionalities, or from unpredictability
regarding the performance of AI-based systems. In order
to take these risks into account during the development
process, the development cycle passes through what are
known as checkpoints. It is at these checkpoints that (partial)
integration and assessment take place in relation to the
requirements. For ML components, this entails an evaluation
against validation metrics in order to assess the function within
the overall system. The outcomes of a checkpoint can prompt
refinements as well as adjustments in the solution approaches
taken to achieve component functionality. By cycling through

PAISE® — the process model

PAISE® highlights the development of a product as an overall system that can be broken
down into subsystems. PAISE® is characterized by a cyclical progression through refinement
steps, component development and checkpoints. This makes it possible to alternate
between an explorative approach on the one hand and a goal-oriented approach
on the other.

component development, checkpoint/assessment and
refinement, the maturity level of all components and thus
of the overall system is continuously increased.

In parallelized component development, it is possible
to combine different process models in a hierarchical
manner. While preferential procedures can be followed
for the development of conventional system components,
“ML component development” is defined for ML components
and links the development phases in a standardized manner
according to engineering standards. Given the fact that
sourcing the training data required for developing the
ML component can sometimes be very complex, PAISE®
addresses the process of data provisioning (pp. 19–21)
separately.

A waterfall model was chosen for the overall system
development procedure in this description. However, it should
be emphasized that the seven phases described can also be
applied to other models. The underlying “checkpoint-based”
concept of PAISE® is still applicable.

PAISE® is a process template that can and should be
adapted to the organizational framework conditions at
the company. As with any process model, the elements of
PAISE® must be applied to each use case in order to derive
specific action steps from it. PAISE® focuses on the technical
process (see ISO/IEC/EEE 15288:2015) and does not address
commercial aspects and company-specific processes.

12 This relates to risks that threaten the project and that can be minimized using iterative approaches in line with Boehm’s spiral model. [B. Boehm. (1986).
A Spiral Model of Software Development and Enhancement. ACM SIGSOFT Software Engineering Notes. 11 (4): 14–24.]

Fi
g

u
re

 1
: S

ch
em

at
ic

 r
ep

re
se

n
ta

ti
o

n
 o

f
th

e
PA

IS
E®

 p
ro

ce
ss

 m
o

d
el

7

PAISE

8

System model

The system model describes the dependencies between the
components (i.e. subsystems, enabling systems and
datasets) and their interfaces.13 It is based on the model for
technical systems published by Ropohl in 1979 as part of the
systems theory of technology (Ropohl, 2009). The system
model is initially created in the functional decomposition
phase and defines the components that are developed with
the aid of the individual disciplines in the development cycle.
An example of such a system model can be found on page 13.

Role allocation

Role allocation defines which responsibilities are required
in which phase. This artifact is initiated in requirements
& problem specification and is employed and adapted
in all further phases of the process model. A more detailed
description of the aspects of role allocation can be found
on pages 28–29.

Documentation for external testing

Documentation for external testing records the characteristics
that the overall system or individual components must
fulfill in order to be tested and accepted by external parties
(e.g. authorities). The documentation also comprises
indicators of this fulfillment or reasoning amassed in the
course of development and testing. Typical examples of such

Permanent artifacts

PAISE® has four permanent artifacts. The artifacts are initiated at specific stages
and are continuously expanded and adapted during the course of development.

guarantees are functional safety and IT security, which can
also include aspects of data protection provided by the system.
Furthermore, the documentation may include information on
explicability, manageability or judicial enforceability.

Data documentation

The data documentation is a description of the data that have
been used for the development and testing of the AI-based
components and are decisive in determining their function.
Documentation is created during the development cycle
and continuously expanded and adapted during operation
& maintenance. Data used should, on the one hand, be
categorized in terms of their source (e.g. the public datasets
used, collection and annotation methods, measurement
methods, environmental conditions), and, on the other
hand, be presented in terms of their quality (technical
errors, uncertainties, etc.), scope and initial processing
(estimation of missing values, enhancement for significantly
underrepresented populations). The European Commission’s
proposal for statutory regulations concerning AI, for example,
calls for appropriate qualities.14

By archiving all data used, requirements such as those set
by the European Commission can be met to some extent.
However, this is not always sensible, for example, in the
case of particularly large volumes of data or in the case of
online learning systems. Methods can then be used to reduce
datasets to samples or metadata, for example, or for version
changes that may use hash values.

13 This consideration is reflected in numerous approaches to how AI or ML-based systems are currently handled. For example, in the mobility sector, with
ISO 21448 “Road vehicles — Safety of the intended functionality,” there is a transition from conventional faults in individual components to complex risks
of the overall system.

14 [European Commission. (2021). Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonized Rules on Artificial
Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Act, Brussels: COM/2021/206 final.]

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

Guiding questions

• What is the issue to be solved?
• What will be sold to customers?
• What is the initial state?
• What characterizes the desired end state?
• Which data are to be utilized?
• Are AI methods already in use?
• Can existing ML models be used in the course

of transfer learning?

Results

• Documentation of the answers to and conclusions
drawn from the guiding questions in the form
of a presentation of the issue and the goals,
e.g. a project profile

9

Goals & problem specification

In the first phase of PAISE®, the goals to be achieved with the
product being developed are defined. In addition, a problem
specification is established. This will be developed in greater
detail and refined in the subsequent phases.

In this phase, it is particularly important when organizational
complexity is high to ensure that the problem specification
is consistent across all teams and organizations involved.

The goals can also include business models to be pursued,
such as whether a product is to be developed and then
mass-marketed, or whether a specific service is to be rolled out.

15 The example of an automotive emergency braking system was chosen here specifically to improve comprehensibility, given the widespread everyday experience
in this area.

Example:15

The development of a camera-based emergency braking
system for passenger cars is commissioned. The system
should be able to detect the vehicles driving in front on the
highway using a single front camera, estimate their distance
and relative speed, and trigger emergency braking if a rear-
end collision is imminent. In the first phase, it is established
that the system is required to prevent rear-end collisions with
a high degree of reliability, that the entire processing chain
from camera selection to the implementation of electronic
brake control needs to be specified, and that the company
commissioning the project does not currently use AI processes
or have datasets on which to base the development.

Goals & Problem Specification

Requirements
& solution approaches

At this point, ideas for possible solution approaches are
derived from the product requirements for the first time.
This still takes place at the high level. This phase can also yield
several possible solution approaches, which are then assessed
in terms of their feasibility. In the subsequent development
process, work is initially carried out on the approach that
seems most realistic, which is then fine-tuned.

If the decision is made to use AI-based solution approaches,
requirements from legal regulations will also need to be taken
into account in this phase going forward.16 Examples of such
additional requirements are documentation requirements, such
as conceptual decisions regarding procedures for ensuring
data sovereignty, data management, data collection and data
preparation or the introduction of a risk management system.

16 See the European Commission’s proposal for legal regulations regarding AI: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206

Example:

In the course of this phase, it is established that the system is required to work reliably enough to resolve critical situations
99 percent of the time without the driver’s intervention. Damage can occur as a result of both false-negative activations
(failure to avoid rear-end collision) and false-positive activations (accidents caused by unnecessary emergency braking).

The system should not continue to learn during driving, but should only be updated as needed through manufacturer
updates at annual maintenance appointments. The system has a high degree of autonomy over the longitudinal guidance
of the vehicle in order to assist drivers if they are not paying attention, and it does not rely on drivers themselves to brake
in time. By the same token, drivers are usually unable to cancel false activations in time. The system does not take over
the regular task of driving the car, however (distance control, lateral guidance). It is assessed that AI can be used for object
recognition and distance estimation, but also that detailed traceability of the quality of the results must be provided for
approval.

10

Requirements
& solution approaches

In this phase, the requirements for the overall system are analyzed
and possible solution approaches for implementation are defined.

Goals & Problem
Specification

Functional
decomposition

Requirements
& Solution Approaches

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%253A52021PC0206

17 Use cases for (partially) autonomous driving can be divided into five levels according to the SAE J3016 standard by the organization SAE International.
A classification into five levels can also be carried out for production-related use cases, as suggested by Plattform Industrie 4.0 [Plattform Industrie 4.0. (2019).
Technology Scenario “Artificial Intelligence in Industrie 4.0,” working paper].

Figure 2: Illustration of the key requirements for the emergency braking system introduced in the example.

50 m

Safety objective: Use of automated detection
and emergency braking to prevent rear-end
collisions caused by inadequate reaction
on the part of the driver.

Benchmark: Activated in at least 99 %
of situations where emergency braking
is required

Safety objective: Prevent rear-end collisions caused by false
activation of the automated emergency braking system

Benchmark: No more than one false activation in 10 hours
of operation

11

Goals & Problem Specification

Guiding questions

• What risks of harm to people and the environment
need to be considered?

• What data should the system use as a basis for
providing information or making decisions?

• Who should have the rights to the data?
• At what point should the system learn from the data?
• Should AI be able to actively control processes?
• For which requirements can AI be used as solution

approach?
• Is a greater degree of traceability (explicability)

of the AI application desired/needed?

Results

• Prioritized system requirements
• Requirements for the development process
• Selection of the most realistic solution approach

for the overall system
• Determination of the benefits and primary focus

of the AI used in the solution approach and
the project

• Initial risk assessment of the system
• Classification of the system according to degree

of autonomy17

• Contractual regulations for use of data

https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/KI-industrie-40.pdf?__blob=publicationFile&v=10
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/KI-industrie-40.pdf?__blob=publicationFile&v=10

12

The functions defined in the requirements for the overall
system are allocated to subsystems. The granularity of this
subdivision depends heavily on the complexity of the system.
In addition to this decomposition process, clearly defined
interfaces are established.

In addition to considering the overall system, this phase
specifies enabling systems that are not part of the delivered
system but are necessary for its development.

It is important to emphasize that the nature of relations
between components, i.e. between enabling systems and
subsystems, can vary greatly. Energy flows (e.g. electricity,
hydraulics, compressed air), information flows (e.g. data),
power flows and material flows are examples of such relation
types.

Figure 3 shows an example of this kind of decomposition.
It should be noted that components can also act as data
sources. Data sources are considered to be subsystems or

enabling systems that provide data for development and/
or for operation and thus have a significant influence on the
functionality of the AI components.

The decision as to which subsystem is AI-based can be
made either with the benefit of experience during the initial
functional decomposition process or during the development
cycle, which is the stage earmarked for refinement of the
initial decomposition. It is important to note that the decision
to use AI is part of the solution approach, not part of the
requirements. In addition, the need for additional enabling
systems or subsystems may arise during development.
Likewise, components can be omitted if it can be shown
that they are no longer needed. It is therefore important
to mention that the initial functional decomposition is not
definitive. It is used for the first iterations of the process and
should be adapted in the following ones. The functional
decomposition supports the specific purpose of both the
conventional components, such as mechanical and electrical
systems, and the AI-based components.

Example:

The decomposition process yields the result shown in Figure 3. In the detector, objects are identified in the images captured
by the camera. In the decision maker, an estimation of the distance and relative speed of the objects is made, and an
emergency braking decision is made on that basis. If the decision is made to trigger emergency braking, a signal is sent to
the brake control system, which monitors the hydraulic mechanical brake trigger. The brake is not part of the overall system
supplied, but is connected to the brake control system via a predefined interface. The detector and the decision maker are
AI-based subsystems. The mounting position for the camera on the car should be optimized using an AI-based enabling
system. In addition, data from the camera, when available, should be stored in an internal database to make training data
available for the development of the detector. However, since the camera is not available from the outset, the detector is
initially developed on the basis of synthesized camera images and with an externally available dataset of traffic situations
called “Cityscapes.” The Cityscapes dataset is also used in the development of the decision maker. In the example shown,
“Camera,” “Internal database,” “Synthesis of camera images” and “Database with Cityscapes dataset” are data sources.

Functional decomposition

In the third phase, the functions of the overall system are initially
broken down into subsystems, resulting in a mostly hierarchical
subsystem specification with well-defined interfaces. This is
supplemented by the specification of any additional enabling
systems required.

Requirements
& Solution Approaches

Functional
decomposition

Component specification
& checkpoint strategy

Interface

Relationship

AI components

Enabling systemsSubsystems

Datasets

Position optimization
Camera

Input

Output

Internal database

Database with
Cityscapes dataset

Synthesis of camera
images

Brake control

Detector

Decision maker

Overall system Legend

Figure 3: Schematic representation of the system model for an emergency braking system as an example.

Guiding questions

• Which subsystems comprise which functionalities?
• What enabling systems are required for subsystem

development?
• What task is likely to be performed by an AI

component?
• What data sources are there for training, testing

and operating AI components?

Results

• (Hierarchical) system and enabling system
specification

• Location of data sources and datasets for training,
testing and runtime of AI subsystems or AI enabling
systems

• Definition of interfaces between subsystems and
enabling systems

• Schematic representation of the development
environment

13

Functional decomposition

14

The component specification is derived in the first instance
from the requirements for the overall system and from the
system model. Specific requirements for the subsystems
are drawn up and potential component-specific solution
approaches are devised. These solution approaches are
reviewed and refined during the development cycle phase.

Checkpoints are used to synchronize the development
status of all components and to test the interaction of the
subsystems within the overall system. To this end, (partial)
integration of the subsystems takes place at this point,
together with corresponding verification and validation tests
with respect to the requirements for the overall system.
Since the development process can be a different one for
each component, one can expect the rate of progress to differ
between components. Not all components are required to
actively participate in each checkpoint.

Different strategies can be used in determining when and
according to which criteria a checkpoint takes place. Although
traditional milestone planning is possible, and offers many
advantages in terms of predictability, a more agile approach
is recommended. The difference between checkpoints and
formal milestones is that a specific stage of development does
not necessarily have to be defined. In terms of checkpoint
planning, the following strategies are possible:

 � The feature-based strategy: A specific feature or
requirement is to be implemented by the next checkpoint.
This strategy is based on the implementation of what
is known as the “user story” in the agile process model
SCRUM. It is important that only design decisions

that are necessary for implementing the feature and
achieving a minimum viable product are made during
the development stage. Ultimately, this saves costs when
it comes to making decisions.

 � The maturity-based strategy: A checkpoint is reached
whenever a minimum of two subsystems have reached
a certain level of maturity. In this case, maturity levels
could be:

• Preliminary analysis (proof of concept)
• Guarantee of basic functionalities
• Achievement of performance metrics (KPI)
• Performance enhancement/optimization
• Optimization of user friendliness

 Depending on the application, the maturity levels can be
further specified and subdivided. They therefore constitute
interim goals on the way to the finished product.

 � The time-based strategy: A checkpoint is reached at regular
time intervals, e.g. one week. The challenge here is to select
the work packages up to the next checkpoint in a way that
makes it possible to (partially) integrate them with all the
new features at that point. However, given the fact that not
all components have to participate in a checkpoint together,
it is also possible to use different time intervals for each
component.

Both when pursuing a strategy and when combining different
strategies, it is important that the next checkpoint in each
case is clearly defined in the refinement step. This includes the
issues of which subsystems participate in (partial) integration
and when a checkpoint is reached.

Component specification
& checkpoint strategy

In this phase, a preliminary version of the component specification
is created, and a strategy for the checkpoints of the concurrent
subsystem development is defined.

Functional
decomposition

Development cycle

Component specification
& checkpoint strategy

Guiding questions

• Which component-specific solution approaches
should be pursued?

• What information is available to the AI subsystem
as an input (feature vector)?

• What quality level does the AI subsystem have
to achieve and how is it verified?

• What quality of data needs to be available, and at
which checkpoint, for AI subsystem development
to move forward? How is the quality level verified?

Results

• Documentation of all initial specifications
• Documentation of the strategy for the checkpoints

Feature-based strategy

By way of example, 2–3 features to be implemented within
the initial development cycles are shown below for each
component. A checkpoint takes place as soon as it is possible
to integrate one of the developed components.

Camera:
• Elaboration of suitable specifications (resolution,

frame rate, etc.)
• Procurement of prototype
• Determination of optimum installation position

Datasets:
• Selection of dataset (Cityscapes)
• Interface connection to detector
• Increase in consistency with target application through

synthetic generation of new camera images

Detector:
• Comparison with camera specification
• Interface connection to decision maker
• Verification with real-world camera data

Decision maker:
• Interface connection to detector
• Verification against real-world data from detector

Brake control:
• Elaboration of suitable specification
• Verification of brake implementation on test bench

Maturity-based strategy

The following is an exemplary description of a few maturity
levels for the overall system using bullet points.

Proof of Concept:
• Test vehicle with camera prototype
• Detector and decision maker were developed using

Cityscapes dataset
• Brake intervention using series AEB interface
• Test drives at the test site

Implementation of 70% of the requirements:
• Switch to camera target system
• No embedded computer in vehicle yet but dedicated

computing unit on passenger seat
• Use of real-world target vehicle in development stage
• Test drives at the test site

Implementation of 90% of the requirements:
• Hardware and software available in target architecture
• Performance of emergency braking system still unknown
• Real-life traffic tests with safety driver

Implementation of 100% of the requirements
• Fully developed overall system with known performance

that meets requirements

15

Component specification & checkpoint strategy

Example:

The following table compares the aspects of the maturity-based and feature-based strategies for checkpoints.

When dealing with the example in subsequent phases, the feature-based strategy is chosen. At each refinement step,
goals and features that are to be implemented by the next checkpoint are developed for each component. Examples
of the initial component specifications for the “Database with Cityscapes Dataset” and “Detector” components are detailed
on pages 20 and 24, respectively, in the context of the corresponding procedures during development.

16

Refinement takes place on the basis of the results of the
checkpoint/assessment. The solution approach chosen
for implementing the respective component specification is
elaborated in more detail or, if necessary, varied. A variation
of the component-specific solution approaches is sensible
in the first cycles of the development cycle in order not to
exclude any solutions from the outset. In later cycles, work
should only be done on the detailed design of the solution
approaches in order to continuously increase the maturity
of the product. The refinement step takes place in an
interdisciplinary manner to take into account the dependencies
between the components. Subsequently, appropriate
adjustments are made with regard to the system model as well
as the component specification. In particular, this may involve
further decomposition of components, for example to avoid
bottlenecks in development, or additional components may
be added if, for example, new data sources and datasets are
included.

The component specifications that must be met and validated
are fundamental to concurrent component development.
Development takes place for each component according to an
individually suitable and domain-specific procedure. In the case
of conventional components such as mechanical or electrical
subsystems, for example, a systems engineering procedure
can be used. The prerequisite is that this approach can be
integrated into the cyclical principle described in this work.
PAISE® specifies the processes for ML component development
(p. 22) and data provisioning (p. 19).

Once a solution approach has been implemented for
a component (whether prototypical or refined), it can be
integrated into the surrounding overall system or the
surrounding subsystem and validated and verified as part of

integration tests. Checkpoints synchronize this integration
of subsystems. Components can also passively participate in
checkpoints if, for example, the development status does not
allow for integration. In this case, the development status of
the previous cycle is used for this component, simulations
are used, or only the interfaces are tested. Finally, an
assessment takes place, with corresponding documentation
of the development status of all components and the results
regarding the overall system. The documentation process
should be supported by a versioning process that includes the
data used, particularly in the case of ML components.

Overall, the checkpoint serves to focus attention on
interdisciplinary cross-sectional aspects. In addition to
considering functional safety or costs, this may also include an
open discussion on potential ethical conflicts that may arise,
for example, from the use of incomplete or biased data. Such
aspects are addressed specifically by the data officer and are
also incorporated into the data provisioning process.

The “checkpoint-based” cyclical approach outlined above aims
at ensuring the continuous improvement of the overall system.
It contains three properties that are essential for AI systems
engineering from our point of view:

 � It takes into account the fact that the (further) development
of some components depends on the results of others.
For example, the development of an ML component
cannot take place effectively until initial data are available.
Likewise, the design of a subsystem to be optimized using
ML-based methods can be started only after the associated
ML-based enabling system has been developed. The
interdependencies of the components arise from the system
model. In addition, a time dependency representation

Development cycle

Component development takes place in iterative cycles that
continuously increase the maturity of the overall system. The cycles
consist of a refinement step, a phase of concurrent component
development and a checkpoint that includes a progress assessment.
Eventually, the results lead to a decision as to whether the overall
system has been completed in accordance with the requirements.

Component specification
& checkpoint strategy

Development cycle

Handover

C
am

er
a

p
re

-s
el

ec
ti

o
n

M
L

co
m

p
o

n
en

t
d

ev
el

o
p

m
en

t

Ex
am

p
le

 p
. 2

4

M
L

co
m

p
o

n
en

t
d

ev
el

o
p

m
en

t
M

L
co

m
p

o
n

en
t

d
ev

el
o

p
m

en
t

Ti
m

e

D
at

a
p

ro
vi

si
o

n

D
ec

is
io

n

m
ak

er

D
et

ec
to

r

C
it

ys
ca

p
es

d

at
as

et

C
am

er
a

Ex
am

p
le

 p
. 2

0

C
o

m
p

ar
is

o
n

 o
f

ca
m

er
a

sp
ec

ifi
ca

ti
o

n

w
it

h
 d

et
ec

to
r,

lin
k

to
 d

ec
is

io
n

 m
ak

er

O
b

je
ct

iv
e:

 lo
w

er

re
q

u
ir

em
en

t
fo

r
d

et
ec

to
r

N
o

t
g

o
o

d

en
o

u
g

h
N

o
t

g
o

o
d

en

o
u

g
h

In
te

rf
ac

e
to

 d
et

ec
to

r

In
te

rf
ac

e
to

 d
at

as
et

Pe
rf

o
rm

an
ce

b

as
ed

 o
n

 t
es

t
d

at
a

O
K

In
te

rf
ac

e
to

 d
et

ec
to

r

In
te

rf
ac

e
to

 d
et

ec
to

r

In
te

rf
ac

e
to

 c
am

er
a

C
am

er
a

sp
ec

ifi
ca

ti
o

n

re
m

ai
n

s

C
o

m
p

ar
is

o
n

 w
it

h

ca
m

er
a

sp
ec

ifi
ca

ti
o

n
,

in
te

rf
ac

e
to

 d
ec

is
io

n
 m

ak
er

O
b

je
ct

iv
e:

Im
p

ro
ve

d
d

et
ec

to
r

p
er

fo
rm

an
ce

O
b

je
ct

iv
e:

Im
p

ro
ve

d
d

et
ec

to
r

p
er

fo
rm

an
ce

M
L

co
m

p
o

n
en

t
d

ev
el

o
p

m
en

t
M

L
co

m
p

o
n

en
t

d
ev

el
o

p
m

en
t

N
o

t
g

o
o

d

en
o

u
g

h

Checkpoint/assessment

Refinement

Checkpoint/assessment

Refinement

Pr
o

cu
re

m
en

t
o

f
ca

m
er

a

Fi
g

u
re

 4
: E

xa
m

p
le

 o
f

a
d

ev
el

o
p

m
en

t
cy

cl
e

17

18

Development cycle

Example:

All subsystems and enabling systems are developed during this phase. To provide a clear representation in the adjacent figure,
we have limited ourselves to the camera, detector and decision maker subsystems, as well as to the Cityscapes dataset that
is provided for developing the detector. The individual actions are only shown in an abstract manner and will be explained
in more detail with regard to ML component development and data provisioning in the following sections.

At the outset, the Cityscapes dataset is prepared (see detailed example in the following section) and encapsulated as
a component with a defined interface. At the first checkpoint, the test of the interfaces between the Cityscapes dataset and
detector, as well as between the Cityscapes dataset and decision maker, takes place. This is successful, so no adjustments need
to be made to the specifications, decomposition or interfaces during the refinement step. Furthermore, the development
of an initial prototypical version of the detector (see detailed example on p. 22) and decision maker is defined as the objective
for the subsequent component development process. At the same time, the selection process for the camera subsystem
is started.

The camera, detector and decision maker are involved in the second checkpoint. The detector and decision maker have
been developed prototypically based on indicative specifications. The specified camera parameters are compared with the
assumptions of the detector; it is found that the selected parameters are broadly consistent with the training and test data
from the Cityscapes dataset. However, the detector does not reach the required level of detection reliability required by the
decision maker. In the refinement process, the decision is made to retain the camera specification, but to specify new target
values for both the detector and the decision maker: The detector needs to improve its performance, and the decision maker
needs to increase its robustness against detection weaknesses, thus lowering its detector performance requirements. At the
same time, the camera procurement process begins, and this will run for the duration of the next two cycles. In the course
of the subsequent component development process, the decision maker achieves the specified target properties based on
the previous test data. However, during the integration tests at the checkpoint, it emerges that in the interaction between
the detector and the decision maker, less than 99% of the critical situations contained in the dataset are actually evaluated
as such. In the refinement process, the decision is made that the greater potential for optimization lies with the detector
and the decision maker is left in its current state for the time being. Component development now focuses on the further
development of the detector. At the subsequent checkpoint, the interaction between the detector and the decision maker is
tested again. In addition, the camera that has been delivered in the meantime can be connected to the detector so that initial
functional tests can be performed. Subsequent steps include collecting and annotating real data with the target camera system
to assess the detector’s level of development within the overall system.

similar to that of a Gantt chart can prove useful here,
although it should be noted that in an agile approach it is
not possible to use absolute time intervals for planning.

 � It enables an explorative approach, which is especially
necessary for the development of ML-based components,
since it is often impossible to give prior guarantees as to
whether all requirements can be met.

 � It provides the framework for risk-based development
that permits alternative solution approaches, weighs
them against each other on the basis of prototypes and
evaluates them in terms of their risks. Thus, it is not

essential to assume that a component is developed as an
ML component. For example, it may turn out that ML-based
methods are not suitable and conventional statistical
methods should be used.

 � Particularly during the initial development cycles, it can be
worthwhile to take a rough look at various alternatives,
even if they involve a greater risk, as the risk is reduced
further and further in later phases.18 Risk analysis is
therefore an essential aspect of this phase.

Not all cycles need to be the same length; rather, they can
adapt to organizational circumstances.

19

The specification of the data is adjusted in the refinement
step. These include both the data sources, which can
be different for training, testing and runtime, and the
requirements for the data themselves.

Requirements may include technical aspects relevant to the
AI component’s ability to perform its set tasks, such as the
data volume, quality, i.e. whether information is missing or
incorrect, and representativeness, i.e. whether the training
data are representative of the data encountered during
runtime. In addition, there are overarching non-technical
aspects such as bias in the distribution of data that can lead
to unfair decisions (e.g. gender-specific decisions in personnel
selection), costs for data acquisition or legal aspects regarding
personal data, which in turn may necessitate additional steps
such as anonymization or pseudonymization.

The subsequent procedure for data provisioning is based on
the V-model.20 At a higher level, the first step is to define
the target metrics against which the data will later be
evaluated. The target metrics in this case are derived from
the requirements mentioned above.

This is followed by the experiment or data collection. The term
“experiment” is used here to refer to data collection under
controlled conditions. For example, for anomaly detection,
data collection — with representatives of known anomalies

Data provisioning

The data provisioning process aims to generate, prepare and
evaluate training, test and validation datasets. In doing so,
requirements regarding the relevance, representativeness and
correctness of the data are to be met.19 The data form the basis
for the development and functionality of AI components.

and the normal state — can be performed using guided
experiments. In the case of supervised learning, this facilitates
the labeling process, i.e. assigning target values that are to be
predicted by an ML-based algorithm. The data collection step
also includes the recording of data under realistic conditions
and the collection of artificially generated data, e.g. from
simulations, or the augmentation of an existing dataset using
data augmentation techniques. Similarly, a selection of public
datasets may be considered at this stage.

The raw data acquired are screened and prepared during the
data preparation process with regard to the issue presented.
The specification is used as a basis for deriving features,
i.e. input characteristics, for example. These features form
the basis for the correct functionality of the ML component.
Feature selection is based primarily on domain or expert
knowledge, but significance considerations may also be
relevant here.

In addition, the techniques of aggregation of multiple data
points, noise removal or even filtering of incomplete data
points can be used in this step. Another useful method is that
of data imputation, i.e. estimating missing values. For example,
if a sensor fails for a brief period, the corresponding feature
and the incomplete data points can still be used. Furthermore,
multiple features can be combined into a new feature to
reduce the scale and thus the complexity of the data points.

18 c.f. spiral model [B. Boehm. (1986). A Spiral Model of Software Development and Enhancement. ACM SIGSOFT Software Engineering Notes. 11 (4): 14–24.]

19 These three aspects are stipulated in the European Commission’s proposal for statutory regulations concerning AI [European Commission. (2021). Proposal for
a Regulation of the European Parliament and of the Council Laying Down Harmonized Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending
Certain Union Legislative Act, Brussels: COM/2021/206 final.]

20 [B.W. Boehm. (1981). Software Engineering Economics, Prentice Hall.] [J. Friedrich, M. Kuhrmann, M. Sihling, U. Hammerschall. (2009). Das V-Modell XT.
Informatik im Fokus. Springer, Berlin, Heidelberg.]

Development cycle

Component specification
& checkpoint definition

Handover

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

20

Component specification& checkpoint definition

In the case of supervised learning in the context of
classification, the data are annotated in this step, i.e. the
data points are assigned to their respective classes, if
this has not already been done automatically when the
data were recorded. As part of the development, the
AI component can also be furnished with information
regarding the relationship between data points and classes.
Depending on the requirements, data anonymization or
pseudonymization techniques are also applied in this step.
While some of the processing steps are only necessary
for training, testing and validation data (e.g. annotation),
some methods must also be applied to runtime data for
consistency reasons (e.g. noise removal, data imputation,
combining multiple features, etc.).

Data assessment is the final step in the data provisioning
process. This is where the previously defined target metrics
relating to the data requirements come into play. In addition
to the technical aspect, data assessment also plays an
important role from a legal point of view when evidence
has to be provided to external organizations. According
to the EU proposal, appropriate governance and data
management procedures are to be used for this purpose.

The processed and evaluated data will be made available
for AI component development upon successful completion
of the step.

It should be emphasized that the data preparation process
does not necessarily have to be a manual one. In this case
in particular, there is huge potential for the automation of
individual work steps or sequences of steps.

Data provisioning Checkpoint/assessmentRefinement

Speci�cation Provisioning for ML
subsystems/tools

Data assessmentDe�nition of target metrics

Data preparationExperiment/data
collection

Assessment

Data acquisition

Figure 5: Schematic representation of the data provisioning procedure

Example:

For the subsystem developments of the detector and
decision maker, vehicle camera image data are required
in which the vehicles driving in front are annotated. Since
these data are not available at the start of the project, the
publicly available Cityscapes dataset is used, which contains
actual vehicle camera images with manually annotated
objects. As part of the data provisioning process, it must be
checked to what extent the dataset is compatible with the
target application, i.e. how representative it is (for example,
in terms of camera resolution, driving scenarios, etc.). In the
following, we will limit ourselves to the aspect of driving
scenarios by way of example. For this purpose, the first
step is to define target metrics for the traffic situation in
the Cityscapes dataset. In the next step, the dataset is
downloaded from the provider for evaluation. In the data
provisioning process, images that only show people walking
or cycling are filtered out, as these are irrelevant for the
target use case of highway driving. In the final step of the
data assessment process, the entire dataset is assessed once
again in terms of the representativeness of the scenarios.
It emerges that the scenarios are acceptable for preliminary
development, but contain insufficient data from the target
use case. Cityscapes places considerable focus on urban
scenarios, whereas the target application is primarily
aimed at highways. Cityscapes is deemed to be sufficient
as a data source for the initial prototype development of
the detector. However, later in the project, images will be
artificially generated using an enabling system — a vehicle
simulation — and then post-processed using AI techniques
to make them more realistic. Finally, as soon as it is available,
measurement data from public transport will be collected
and manually annotated using the actual target camera
system. In addition to the issues of representativeness and
data quality, there are also data protection issues for this
kind of data.

21

Component specification& checkpoint definition

Figure 6: Potential data sources and challenges in the sample application.

a) Real data from the Cityscapes
dataset.

d) Simulated image data from
a 3D rendering engine.

b) Data from the actual target
camera system.

e) Simulated image data, enhanced
with machine learning techniques
such as generative adversarial
networks.

c) Training and testing data must
also cover the scope of the target
challenges.

f) Simulated data can provide anno-
tations automatically.

22

This process is intended to encapsulate an ML model (i.e. the
data-driven learned part) in a component that is specified as
precisely as possible. This creates an organizational interface
between the traditional discipline of data science and systems
engineering.

The starting point is the specification of the component in
the context of the surrounding system, which is detailed
and adapted iteratively during the refinement process.
The specification includes, among other things, the
ML method (e.g. neural network, decision tree, etc.) as
a possible solution approach based on the component
requirements. In choosing this, both higher-level requirements
for the overall system (e.g. the traceability of decisions)
and direct dependencies on other components (e.g. limited
computing resources, availability of data, availability of target
variables) are taken into account.

The first step deals with the integration of data sources for
training, testing and validation. It may well happen that the
data sources and thus the interfaces are not the same in every
cycle, e.g. if data are available in tabular form initially and later
in a database.

In developing the test and validation metrics, global cost
functions are derived from the component requirements
that lend themselves to data-driven assessment. Domain
knowledge should be incorporated here in order to be able
to test ML components individually, but with reference to their
function within the overall system.

The ML procedure is implemented as a concrete ML architecture
in the next step, with specified hyperparameters. Examples
include defining the number of neurons and layers in artificial

neural networks and defining the local cost function and
learning rate.

In model training, the ML architecture is transformed into
an ML model suitable for the functionality to be fulfilled.
Since the results of the learned model depend heavily on the
ML architecture, i.e. the chosen hyperparameters, these are
varied several times. The aim is to find the hyperparameter
configurations that yield the best model on the basis of the
local cost function and a validation dataset. In many cases,
this hyperparameter optimization can be partially or fully
automated using appropriate tools (e.g. auto-ML systems).

In the subsequent model assessment, a test dataset and the
previously defined test and validation metrics are used to
evaluate the quality of the learned and optimized ML model.
Thus, the accuracy and performance of the model can be
evaluated in terms of previously unseen data and metrics
tailored to the component functionality to be fulfilled.

Model packaging as a component is the final step in
ML component development. At this point, the trained and
validated ML model is prepared in such a way that it can be
deployed on the target platform. While previously the model
was validated on the basis of data only, now it is ensured that
the model is capable of running on the target platform, for
example on a resource-constrained embedded system, where
it provides comparable results.

Actual integration of the components into the higher-level
system takes place at the checkpoint. It is only at this point
that tests reveal whether the specification and the derivation
of the architecture have been successful and whether the
metrics achieved on a component-specific basis also have

ML component development

The process of ML component development is based on the
V-model21 as established in the field of software and systems
engineering. The aim is close integration with ML enabling
systems and data sources to allow iterative integration and
validation of results within checkpoints.

21 [B.W. Boehm. (1981). Software Engineering Economics, Prentice Hall.] [J. Friedrich, M. Kuhrmann, M. Sihling, U. Hammerschall. (2009). Das V-Modell XT. Infor-
matik im Fokus. Springer, Berlin, Heidelberg.]

Development cycle

Component specification
& checkpoint definition

Handover

Guiding questions

• How can requirements be translated into test and
validation metrics?

• Which cost functions are suitable for model training?
• Which ML method is suitable for producing an optimal

component in terms of the overall system?
• What improvements can be made as a result of changes

to other subsystems (e.g. data)?
• Do external providers offer AI components that

can be used and further developed?

Results

• ML component with clear documentation
of requirements, data and tools used

• Results from the evaluation of test and validation
metrics

• Assessment of potential for improvement
depending on other subsystems

• Continuous testing and monitoring approach
for the ML component using test and validation
metrics

23

Component specification& checkpoint definition

ML Component Development Checkpoint/assessmentRefinement

Component speci�cation IntegrationModel Packaging
as ComponentIntegration of data sources

Model veri�cationTest & Validation
metrics

Further solution
approaches

Integration tests

ML architecture Model training

System

Learning architecture

Model search

Hyperparameter optimization

Figure 7: Schematic representation of the ML component development process.

a positive effect on the overall system. If this is not the
case, additional cycles are necessary. In these cycles, further
solution approaches, such as other ML methods, are tested
in coordination with the other components. The goals of
additional cycles could also be optimizations that go beyond
the requirements, such as increasing the prediction accuracy

of the ML system. To control the development process, it is
important that metrics are translated into specific estimates
of costs and risks within the checkpoint on the basis of the
reports created, so that decisions can be made regarding
further development.

24

Component specification& checkpoint definition

Example:

For this insight, the focus is on the subsystem development of the detector. The aim is to detect vehicles driving in front in
the video stream of a single camera. By way of example, the development is illustrated here using an existing external dataset
called “Cityscapes.”

In the context of component specification, the following solution approach is rated as promising: The task is to be solved
using an artificial neural network for the recognition of objects in individual images, which is run on a small GPU-based
computing unit. The neural network receives camera images via an Ethernet interface, and forwards results to the decision
maker via a RAM interface, which is also run on the same computing unit. The aim is to achieve at least two detections per
vehicle within one second of visibility at a distance of up to 50 meters. In the case of less frequent detections, the tracker is
allowed to dismiss the object as a false detection. The error rate must be less than 0.2 percent for this detection task.

During the process of integrating the data interfaces, the technical interfaces in the target system (Ethernet streams of
camera images) are converted into operational interfaces (video images in RAM), and the AI-related software portions
of the component are detached from the embedded hardware so that they can be developed, trained and tested on a PC
or in a computing cluster, for example. The decision is made that the system will initially be developed in the programming
language Python and, due to the lack of datasets from the real-world system, will use an existing annotated vehicle dataset,
Cityscapes,22 which is fundamentally similar to the target system.

As part of the development of test and validation metrics, component requirements (two detections per second) are adapted
to the requirements of the specified ML process. Since this method only uses a single image evaluation, it is not possible to
adopt time periods directly. A frame rate of 25 frames per second is assumed and it is a requirement that each object must be
detected at least twice over the course of 25 consecutive frames. Furthermore, this requirement may only be breached for less
than 0.2 percent of the objects in the dataset.

In the process of choosing the ML architecture, a “Mask R-CNN” approach23 is selected that recognizes individual objects
based on their image pixel regions. To train this neural network, the cost function must be broken down into individual
images and their pixels. So, even though “recognized” vs. “not recognized” is supposed to be evaluated for an entire image,
a corresponding cost function is unsuitable for training. It is more practical to “punish” each misclassified pixel in training —
and evaluate the performance of the neural network using the common mIoU metric24. This is where a major disconnect
in requirements occurs: We are training a network that recognizes object outlines as precisely as possible in order to obtain
an ML component that recognizes objects as frequently as possible.

Thus, the model is trained on the basis of the mIoU metric using the Cityscapes dataset. If the results are not satisfactory,
hyperparameters, such as the number of layers in the neural network, can be adjusted.

In the model assessment process, the ML model is evaluated on the basis of the frame sequences, i.e. object outlines from
the Mask-R-CNN result are checked for sufficient size and this metric is applied to image sequences from the Cityscapes
dataset to evaluate whether the target of two detections per 25 frames is met, in the Cityscapes dataset at least.

In the context of model packaging as a component, the system is transferred to the GPU computing unit, and the Cityscapes
dataset images are imported as a simulation via the real-world Ethernet interface to mimic a real-world video stream. Here,
the benchmark of two detections per second is tested on the real-world component platform, but (in this iteration) still
without real-world data.

At the checkpoint, the component can now be assessed for compatibility with the components developed concurrently in
terms of its specifications and the achieved quality of results.

25

Region
Proposal
Network

Fast
R-CNN

3x3-Faltungs-Schicht 4x4-Dekonvolutions-Schicht

Zusammenlegung von Schichten

PKW (99%)

Motorrad (98%) PKW (99%)

Person (97%)

22 cityscapes-dataset.com [M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth and B. Schiele. (2016). The Cityscapes
Dataset for Semantic Urban Scene Understanding. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)]

23 A system based on a neural network used to recognize objects in images. [K. He, G. Gkioxari, P. Dollár, R. Girshick. (2017). Mask R-CNN. Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969.]

24 The “mean intersection over union” metric evaluates the average overlap between the machine-detected object and the real-world known object.

25 [L. Sommer et al. “Multi Feature Deconvolutional Faster R-CNN for Precise Vehicle Detection in Aerial Imagery," 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV), 2018, pp. 635–642]

Figure 8: Schematic representation of an R-CNN. Adapted from25.

https://www.cityscapes-dataset.com/

Guiding questions

• How can changes in data distribution that lead
to changes in the behavior of ML components be
detected?

• What criteria should be used as a basis for initiating
maintenance work, for example re-training an
ML model?

• How can the model be monitored for erroneous
behavior?

• Who is responsible for erroneous behavior
if the system continues to learn during operation?

Results

• Operating manual
• Documentation for the company’s service

department
• Maintenance concept (including updates

to the AI component(s))

26

The information required for the operation phase is
prepared for the users and the service team, e.g. in the
form of an operating manual. This includes escalation levels
when error states are detected in the system. Especially
when using ML-based systems, issues concerning the
consistency of the model and the concepts for detecting
erroneous models must be clarified conclusively.

Depending on the type of system in question and on its
level of autonomy and the assessment of risk to humans
and the environment, additional constraints, such as
reporting requirements and declarations of conformity,
must be addressed in this phase. This specifically concerns
high-risk AI systems.

Handover

In this phase, the finished product is transferred from the
development team to the organizational units that take care
of operations and maintenance. To this end, documentation
is prepared for the users and, if applicable, a service team.
Specifically for AI systems, issues related to error-proneness
and maintenance (retraining) of ML models are addressed.

Example:

The system is handed over to the contracted company.
The latter analyzes both the design principles and
the quality of results on the basis of the artifacts and
verifies acceptance. It is specified that ML-based object
recognition is based largely on inventory datasets of
vehicle images, and may not be able to capture future
manifestations (e.g. the possible prevalence of shuttle
minibuses, which are not included in the dataset). It is
specified that the system monitors itself to a limited extent
by running comparisons against simple non-ML processes.
Firstly, regular data collection runs are necessary for
providing updated datasets for re-testing and re-training,
and secondly, vehicle parameters need to be updated,
potentially on a yearly basis. The fact that deployment
of the system must be registered and regularly checked in
the course of maintenance work on account of its nature
as a high-risk AI system is communicated to the relevant
authorities.

Handover

Development cycle

Operation & maintenance

27

Example:

During operation, the system parameters are checked
as part of the annual maintenance intervals, and
abnormalities that have occurred during self-monitoring
of the system are analyzed. Regular data collection is
carried out, and new registrations of other vehicles with
unusual shapes (e.g. new types of shuttle minibuses) are
investigated specifically to determine whether the braking
system achieves a sufficiently high detection rate for these
vehicles.

With regard to AI subsystems, this phase includes,
in particular, the monitoring and regular review of the
ML models. Some AI-based systems are tested (and possibly
also certified) before they are delivered and are no longer
modified during the operation phase. In contrast, other
AI-based systems are continuously updated using data from
operations. There are numerous gradations between these
two extremes.

Changes in the data processed during operation can
degrade the performance of AI subsystems over time.
Such changes can be caused both by latent influencing
variables (e.g. temperature, humidity, etc.) and by changes
in the intended use (e.g. foreign traffic signs, new material
processed in the machine, etc.).

The trigger for updating the AI subsystem can be set both
statically and on the basis of data collected during operation.
In the latter case, metrics concerning model quality or changes
in the distribution underlying the data are used. The collected

data are processed in the context of data provisioning
(see p. 19) and prepared for the further development of
the AI subsystem, which takes place in a subsequent step
with the aid of the ML component development procedure
(see p. 22). Finally, the updated component is reintegrated
into the overall system, tested and put into operation.

Operation & maintenance

In the final operation & maintenance phase, the service and
maintenance concept defined in the previous step is implemented.
The aim is to ensure full functional capability during operation.

Subsystem development

Data provisioning

ML component
development

Subsystem development

Monitoring

Operation Maintenance

Figure 9: Schematic representation of the substructure of the operation & maintenance phase.

Operation & maintenance

Handover

28

The roles and expertise that we consider most important are
listed below. In the requirements & solution approaches
phase, the need for each role should be assessed and a person
should be assigned. It is also possible for several roles to be
assigned to one person.

Project sponsor/commissioning company: The project
sponsor or the commissioning company approves the budget
for the project and specifies the assignment to be worked on.
From this point onwards, the framework conditions, goals
and requirements are defined and regular information on the
project status is requested.

Project management: Project management organizes and
structures the project. It establishes or requests the resources
needed to meet the goals and maintain contact with the
project sponsor. Project management is also responsible for
mitigating any significant organizational complexity by creating
teams, assigning responsibilities and ensuring communication
to make the project a success.

Domain experts: Domain experts demonstrate a high level
of understanding of the application domain that the data
for AI component development come from. The expert has
a particularly active role to play in applications with a high
degree of relevance to physical reality.

Safety officers: They deal with the issue of functional
safety in highly critical systems, prepare risk assessments and
assessments and are responsible for ensuring that the required
critical limits are met.

Other tasks performed by safety officers include assessing
the risks that arise in the event of an application failure and
initiating appropriate preventive measures.

Users/operators: Users assess the practicality of the
application and point out deficiencies, and therefore have an
advisory function. In particular, they have experience in the
human-application interface.

Automation engineers: Automation engineers ensure that
the commands generated by the software are implemented by
deploying the process control system. This expertise is required
more than ever when there is a high degree of autonomy,
since decisions made by AI-based components must be
passed on automatically to the actuators.

AI experts: AI experts create data-driven models and validate
and verify them. They have a basic understanding of the
relationships underlying the data.

IT security officer: The purpose of this role is to ensure the
“confidentiality of data” and “integrity of the application.”
If AI-based processes are to be used, data will need to be
processed, both in the development and in the operation of
the system. According to GDPR, personal data in particular
must be safeguarded against misuse, but internal company
data can also become a target for hackers. Ensuring the
invariability of an application’s function is an integral
aspect of preserving the application’s integrity. This is
about preventing a situation where the application is used
for purposes other than those for which it was designed,
for example, teaching the wrong things to a continuously
learning system.

Software development: Software developers create
the software architecture, coordinate the development
process and carry it out. Throughout the process, they work
closely with AI experts to integrate the AI models that they
create.

Role allocation

Projects and undertakings in the field of AI systems engineering are usually interdisciplinary
and can be very complex. Therefore, a distribution of roles is required that clearly defines
competencies and responsibilities.

29

Role allocation

IT infrastructure experts: IT infrastructure experts create
the architecture of the IT system, including the necessary
interfaces, required computing resources, communication
channels, etc. They liaise closely with the AI experts.

Responsibilities in PAISE®

In the following, the roles described are classified according to the RACI matrix in each phase of the overall system development
process26. Thus, the respective role is categorized as Responsible (R), Accountable (A), Consulted (C) or Informed (I).
In the component specification & checkpoint strategy and the development cycle phases, all roles except project management,
commissioning company and users are required to fulfill their responsibilities with regard to the components that relate
to their expertise.

Data officers: They deal with legislative issues that affect
the data. This includes, for example, assessing whether the
data used are personal and therefore subject to specific
protection.

Responsibilities according to RACI Responsible (R), Accountable (A), Consulted (C), Informed (I)

Role/phase

Project sponsor/

commissioning company

Project management

Domain expert

Safety officer

Users/operators

Automation engineer

IT security officers

AI expert

Software development

IT infrastructure expert

Data officers

1

R

R

I

I

I

I

I

I

I

I

I

2

R

R

C

C

C

C

C

C

C

C

C

3

I

I

R

C

C

-

C

C

C

C

C

C

4

-

A

R

R

C

R

R

R

R

R

R

5

-

A

R

R

C

R

R

R

R

R

R

6

A

R

C

C

C

C

C

C

C

C

C

7

R

I

-

-

-

-

-

-

-

-

-

Legend:

1st phase: Goals & problem specification, 2nd phase: Requirements & solution approaches, 3rd phase: Functional decomposition , 4th phase:

Component specification & checkpoint strategy, 5th phase: Development cycle, 6th phase: Handover, 7th phase: Operation & maintenance

30

In the following, potential application scenarios that generate
optional links between phases are explored. In particular,
this relates to optimization and agile enhancement based
on operation.

Optimization of the AI subsystem, based on
operational data:

The system is validated with respect to the specified
requirements and operation domain by means of careful
testing. However, unforeseen environmental conditions, user
behavior or system interactions that were not considered in
the original specification may occur during operation. Special
cases that usually result from a combination of several extreme
boundary conditions are important in this respect. These new
findings are essential for continuous system optimization.
If these data are available to the development team, individual
subsystems can be optimized. The updates can be fed back
directly into operations or result in new releases. This link
differs from regular maintenance in that regular maintenance
is scheduled and performed either by the operator of the
overall system or by a service team. During optimization,
the development team takes action again to improve the
general behavior of individual components.

Agile enhancement of the overall system, based on
operational data:

Agile enhancement makes use of the DevOps approach.26
As with optimization, the experience gained during
operation can provide impetus for further developments.
While optimization improves existing product functions,
agile enhancement goes one step further. At this point,
we ask ourselves which other problems can be solved by
the product, and which functionalities can be added to
the overall system. For that reason, agile enhancement
requires a re-run of the entire process model, albeit
perhaps in a simplified manner, since existing systems
and documentation can be used as a basis.

Optional links

The previous description of PAISE® followed an acyclic approach, with the exception of the
development cycle. In the following, optional links are discussed. These enable you to leave
a phase, for example, the operating phase, and return to previous phases.

26 The term is derived from “development” and “operations” and describes an approach that is intended to improve collaboration between software development
and IT operations. A continuous transition between development and operations is envisioned, with small incremental updates being made and lessons learned
from their operations being fed back into development.

31

Optional links

1
2
3

Handover

AI componentsDatasets

Enabling systemsSubsystems

Development cycle

Requirements
met?

Component development Checkpoint/Assessment
(Sub-)system testing and

(partial) integration

Refinement

Functional decomposition

Component speci�cation

C
o

m
p

o
n

en
ts

Agile enhancement

Optimization

Phase

Legend

Subprocess

Results

Optional link

Decision

Goals & Problem Specification

Requirements
& Solution Approaches

Functional decomposition

Component specification
& checkpoint strategy

Operation & maintenance

Figure 7: Enhancement of PAISE® with optional links.

32

Glossary

AI Systems Engineering
Translation of KI-Engineering

Checkpoints
Synchronization point for component-by-component
concurrent development in an iterative approach.

Data source
Subsystem or enabling system with well-defined interfaces
that provides data for the operation and/or development of an
AI-based subsystem or enabling system.

Dataset
A set of data that are related in terms of content and are
grouped together for further processing.

Permanent artifact
A result that is produced in the course of a project and is
continuously refined and adapted.

Functional decomposition
The decomposition of a system into subsystems that perform
individual functions.

Overall system
The arrangement of individual interacting subsystems that
together exhibit behaviors and functions that the individual
subsystems do not achieve.

Enabling system
A system that is required during the development and
maintenance of a subsystem, but is not included in the
delivered product, i.e. the overall system.

High-risk AI system
A subset of AI systems that perform safety-critical tasks
according to the EU’s current ARTIFICIAL INTELLIGENCE ACT
proposal. These systems are subject to stricter regulation.

AI-based
AI has a significant influence on functionality. In the case of
components, this can be due to the integration of AI methods
in the component as well as the use of AI methods to develop
and maintain the components.

AI Systems Engineering
Addresses the systematic development and operation of
AI-based solutions as part of systems that perform complex
tasks. Translates the term KI-Engineering.

Component
A subsystem or enabling system.

Artificial Intelligence (AI)
The property of an IT system that exhibits intelligent behavior
akin to that of a human (German Research Center for Artificial
Intelligence).

Machine learning processes
Methods in the field of machine learning.

Machine learning (ML)
A branch of artificial intelligence that involves algorithms that
detect regularities and patterns in datasets and use them to
derive solutions to problems.

ML algorithm
An algorithm that implements a machine learning procedure.

ML-based
Machine learning processes have a significant influence on
functionality. In the case of components, this can be due to
the integration of ML processes in the component as well
as the use of ML processes to develop and maintain the
components.

33

Glossary

ML component
A component in which machine learning techniques are used.

ML model
An abstraction of some aspects of reality. Machine learning
processes create a model based on data in order to solve
a task.

Process Model for AI Systems Engineering (PAISE)
A process model for AI systems engineering.

Process
A number of activities that are intended to lead to a defined
result.

Subsystem
A system that fits hierarchically into an overall system or
a higher-level system.

Systems Engineering
An interdisciplinary approach for developing and implementing
complex technical systems in large projects.

Acronyms

AI
CC-KING
KI
ML
PAISE

Artificial Intelligence
Competence Center KI-Engineering Karlsruhe
Künstliche Intelligenz
Machine Learning
Process Model for AI Systems Engineering

35

Publishing notes

CC-KING is the Competence Center for AI Systems Engineering
of the following Karlsruhe-based research institutions: the
Fraunhofer Institute of Optronics, System Technologies and
Image Exploitation IOSB (in charge), the FZI Research Center
for Information Technology and the Karlsruhe Institute of
Technology (KIT). CC-KING is the interface between cutting-
edge AI research and established engineering disciplines,
and thus aims to facilitate the application of AI and machine
learning methods in practice.

Editor
Dr. Constanze Hasterok, Fraunhofer IOSB
Fraunhoferstr. 1, 76131 Karlsruhe, Germany
constanze.hasterok@iosb.fraunhofer.de

Authors
Fraunhofer IOSB
Dr. Constanze Hasterok, Dr. Janina Stompe,
Dr. Julius Pfrommer, Dr. Thomas Usländer, Jens Ziehn
FZI
Dr. Sebastian Reiter, Michael Weber
KIT
Dr. Till Riedel

CC-KING consortium management
Dr. Thomas Usländer, Fraunhofer IOSB
thomas.uslaender@iosb.fraunhofer.de
Phone: + 49 721 6091 480

CC-KING technical and scientific management
Dr. Julius Pfrommer, Fraunhofer IOSB
julius.pfrommer@iosb.fraunhofer.de
Phone: + 49 721 6091 286

Layout and graphics
Anja Wollfarth M.A., Fraunhofer IOSB
anja.wollfarth@iosb.fraunhofer.de
Phone: + 49 721 6091 346

More information
https://www.ki-engineering.eu

© Fraunhofer IOSB, Karlsruhe 2021

Fraunhofer IOSB is a legally non-independent institute
of the Fraunhofer-Gesellschaft e. V., Munich.

Funded by:

in cooperation with:

CC-KING
Competence Center
for AI Systems Engineering

Baden-Württemberg
MINISTRY FOR ECONOMICS, LABOR AND TOURISM

Karlsruhe Institute of Technology

https://www.ki-engineering.eu

